MINIMAL MODELS OF INFLATION IN SUPERGRAVITY AND SUPERSTRINGS
A novel framework is proposed for embedding the natural inflation into the type IIA superstrings compactified on a CalabiYau three-fold. Inflaton is identified with axion of the universal hypermultiplet (UH). The other UH scalars (including dilaton) are stabilized by the CY fluxes whose impact can be described by gauging of the abelian isometry associated with the axion. The stabilizing scalar potential is controlled by the integrable three-dimensional Toda equation. The inflationary scalar potential of the UH axion is dynamically generated at a lower scale in the natural inflation via the non-perturbative quantum field effects such as gaugino condensation. The natural inflation has two scales that allow any values of the CMB observables (ns, r).
Keywords: inflation, supergravity, superstrings
References:
[1] Starobinsky A. A., Phys. Lett. B91 (1980) 99.
[2] Linde A. D., Phys. Lett. B129 (1983) 177.
[3] Bezrukov F. and Shaposhnikov M., Phys. Lett. B659 (2008) 703.
[4] Freese K., Frieman J. A. and Olinto A. V., Phys. Rev. Lett. 65 (1990) 3233.
[5] Dine M., Rohm R., Seiberg N. and Witten E., Phys. Lett. B156 (1985) 55.
[6] Antoniadis I., Minasian R., Theisen S. and Vanhove P., Class. Quant. Grav. 20 (2003) 5079.
[7] Bagger J. and Witten E., Nucl. Phys. B222 (1983) 1.
[8] Przanowski M., J. Math. Phys. 32 (1991) 1004.
[9] Tod K. P., Lecture Notes in Pure and Appl. Math. 184 (1997) 307.
[10] Ketov S. V., D-instantons and universal hypermultiplet, Los Angeles preprint CITUSC-01-046 (unpublished); arXiv:hepth/0112012.
[11] Ketov S. V., Nucl. Phys. B 604 (2001) 256; arXiv:hep-th/0102099.
[12] Ketov S. V., Nucl. Phys. B 649 (2003) 365; arXiv:hep-th/0209003.
[13] Ketov S. V., Phys. Lett. B 558 (2003) 119; arXiv:hep-th/0302001.
[14] Behrndt K. and Mahapatra S., J. High Energy Phys. 01 (2004) 068.
[15] Davidse M., Saueressig F., Theis U. and Vandoren S., JHEP 0509 (2005) 065.
[16] Alexandrov S., Saueressig F. and Vandoren S., JHEP 0609 (2006) 040.
[17] Calderbank D. M. J. and Pedersen H., Self-dual Einstein metrics with torus symmetry, math.DG/0105263.
[18] Douglas M. R. and Kachru S., Rev. Mod. Phys. 79 (2007) 733.
[19] Polchinski J. and Strominger A., Phys. Lett. 388B (1996) 736.
[20] Behrndt K. and Dall’Agata D., Nucl. Phys B627 (2002) 357.
[21] Cremmer E., Julia B., Scherk J., Ferrara S., Girardello L. and van Nieuwenhuizen P., Nucl. Phys. B147 (1979) 105.
Issue: 12, 2014
Series of issue: Issue 12
Pages: 127 — 130
Downloads: 610