NSVZ SCHEME AND THE REGULARIZATION BY HIGHER DERIVATIVES
The NSVZ scheme is constructed in all orders for the renormalization group functions defined in terms of the renormalized coupling constant for Abelian N = 1 supersymmetric theories regularized by higher derivatives. For the other renormalization prescriptions the scheme-independent consequences of the NSVZ relation are investigated. It is explained, why for the renormalization group functions defined in terms of the bare coupling constant the NSVZ relation is valid for all renormalization prescriptions in the case of using the higher derivative regularization.
Keywords: supersymmetry, renormalization, β-function, anomalous dimension
References:
[1] Novikov V. A., Shifman M. A., Vainshtein A. I. and Zakharov V. I., 1983 Nucl. Phys. B 229 381.
[2] Jones D. R. T., 1983 Phys. Lett. B 123 45.
[3] Novikov V. A., Shifman M. A., Vainshtein A. I. and Zakharov V. I., 1986 Phys. Lett. B 166 329; Sov. J. Nucl. Phys. 43 294; [Yad. Fiz. 43 459].
[4] Shifman M. A. and Vainshtein A. I., 1986 Nucl. Phys. B 277 456; Sov. Phys. JETP 64 428; [Zh. Eksp. Teor. Fiz. 91 723].
[5] Vainshtein A. I., Zakharov V. I. and Shifman M. A., 1985 JETP Lett. 42 224 [Pisma Zh. Eksp. Teor. Fiz. 42 182].
[6] Shifman M. A., Vainshtein A. I. and Zakharov V. I., 1986 Phys. Lett. B 166 334.
[7] Shifman M. A. and Vainshtein A. I., 1999 In Shifman, M. A.: ITEP lectures on particle physics and field theory, v. 2, 485-647. [hep-th/9902018].
[8] Arkani-Hamed N. and Murayama H., 2000 JHEP 0006 030.
[9] Kraus E., Rupp C. and Sibold K., 2003 Nucl. Phys. B 661 83.
[10] Siegel W., 1979 Phys. Lett. B 84 193.
[11] Siegel W., 1980 Phys. Lett. B 94 (1980) 37.
[12] Avdeev L. V., Chochia G. A. and Vladimirov A. A., 1981 Phys. Lett. B 105 272.
[13] Avdeev L. V., 1982 Phys. Lett. B 117 317.
[14] Avdeev L. V. and Vladimirov A. A., 1983 Nucl. Phys. B 219 262.
[15] Avdeev L. V. and Tarasov O. V., 1982 Phys. Lett. B 112 356.
[16] Jack I., Jones D. R. T. and North C. G., 1996 Phys. Lett. B 386 138.
[17] Jack I., Jones D. R. T. and North C. G., 1997 Nucl. Phys. B 486 479.
[18] Harlander R. V., Jones D. R. T., Kant P., Mihaila L. and Steinhauser M., 2006 JHEP 0612 024.
[19] Jack I., Jones D. R. T. and Pickering A., 1998 Phys. Lett. B 435 61.
[20] Slavnov A. A., 1971 Nucl. Phys. B 31 301.
[21] Slavnov A. A., 1972 Theor. Math. Phys. 13 1064 [Teor. Mat. Fiz. 13 174].
[22] Faddeev L. D. and Slavnov A. A., “Gauge Fields. Introduction To Quantum Theory,” Nauka, Moscow, 1978 and Front. Phys. 50 (1980) 1 [Front. Phys. 83 (1990) 1].
[23] Slavnov A. A., 1977 Theor. Math. Phys. 33 977 [Teor. Mat. Fiz. 33 210].
[24] Krivoshchekov V. K., 1978 Theor. Math. Phys. 36 745 [Teor. Mat. Fiz. 36 291].
[25] West P. C., 1986 Nucl. Phys. B 268 113.
[26] Krivoshchekov V. K., 1984 Phys. Lett. B 149 128.
[27] Buchbinder I. L. and Stepanyantz K. V., 2014 Nucl. Phys. B 883 20.
[28] Soloshenko A. A. and Stepanyantz K. V., 2004 Theor. Math. Phys. 140 1264 [Teor. Mat. Fiz. 140 430].
[29] Smilga A. V. and Vainshtein A., 2005 Nucl. Phys. B 704 445.
[30] Stepanyantz K. V., 2011 Nucl. Phys. B 852 71.
[31] Stepanyantz K. V., 2014 JHEP 1408 096.
[32] Bogolyubov N. N. and Shirkov D. V., “Introduction To The Theory Of Quantized Fields,” Nauka, Moscow, 1984
[Intersci. Monogr. Phys. Astron. 3 (1959) 1].
[33] Kataev A. L. and Stepanyantz K. V., 2013 Nucl. Phys. B 875 459.
[34] Pimenov A. B., Shevtsova E. S. and Stepanyantz K. V., 2010 Phys. Lett. B 686 293.
[35] Stepanyantz K. V., 2011 Phys. Part. Nucl. Lett. 8 321.
[36] Stepanyantz K. V., 2011 arXiv:1108.1491 [hep-th].
[37] Kataev A. L. and Stepanyantz K. V., 2014 Phys. Lett. B 730 184.
[38] Kataev A. L. and Stepanyantz K. V., 2014 “The NSVZ beta-function in supersymmetric theories with different regularizations and renormalization prescriptions,” arXiv:1405.7598 [hep-th], Theor.Math.Phys., to appear.
Issue: 12, 2014
Series of issue: Issue 12
Pages: 238 — 242
Downloads: 845