BRST-BFV LAGRANGIAN FORMULATIONS FOR HS FIELDS SUBJECT TO TWO-COLUMN YOUNG TABLEAUX
The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young tableaux Y [ˆs1, sˆ2] having 2 columns are considered for Bose particles propagated on an arbitrary dimensional Minkowski space-time. The procedure is based, first, on using of an auxiliary Fock space generated by Fermi oscillators (antisymmetric basis), second, on construction of the Verma module and finding auxiliary oscillator realization for sl(2)⊕sl(2) algebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Application of an universal BRST-BFV approach permits to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive mixed-antisymmetric bosonic fields of any spin with appropriate number of gauge and Stukelberg fields. The general prescription possesses by the possibility to derive constrained Lagrangians with only BRST-invariant extended algebraic constraints which describes the Poincare group irreducible representations in terms of mixed-antisymmetric tensor fields with 2 group indices.
Keywords: higher spins, BRST operator, Lagrangian formulation, Verma module, gauge invariance
References:
[1] Feldman D., Perez P. F. and Nath P. 2012 JHEP 1201 038.
[2] Sagnotti A., Tsulaia M. 2004 Nucl. Phys. B682 83.
[3] Vasiliev M. 2004 Fortsch. Phys. 52 702.
[4] Vasiliev M. 2015 Lect. Notes Phys. 892 227.
[5] Sorokin D. 2005 AIP Conf. Proc. 767 172.
[6] Fotopoulos A., Tsulaia M. 2008 Int. J. Mod. Phys. A. 24 1, [arXiv:0805.1346[hep-th]].
[7] Fradkin E. S., Vilkovisky G. A. 1975 Phys. Lett. B. 55 224; Batalin I. A., Fradkin E. S. 1983 Phys. Lett. B. 128 303.
[8] Burd´ık C., Boyarintceva N. and Reshetnyak A. In progress. ˇ
[9] Buchbinder I. L., Reshetnyak A. A., Takata H. In progress.
[10] Labastida J. M. F. 1989 Nucl. Phys. B. 322 185.
[11] Metsaev R. R. 1995 Phys. Lett. B. 354 78.
[12] Fronsdal C. 1978 Phys. Rev. D. 18 3624.
[13] Lopatin V. E., Vasiliev M. A. 1988 Mod. Phys. Lett. A 3 257.
[14] Skvortsov E. D. 2009 Nucl. Phys. B 808 569843
[15] Campoleoni A., Francia D., Mourad J., Sagnotti A. 2009 Nucl. Phys. B 815 289.
[16] Metsaev R. R. 2004 Phys. Lett. B. 590 95.
[17] Burdik C., Pashnev A., Tsulaia M. 2001 Mod. Phys. Lett. A 16 731.
[18] Buchbinder I., Krykhtin V., Takata H. 2007 Phys. Lett. B 656 253.
[19] Buchbinder I. L., Krykhtin V. A., Pashnev A. 2005 Nucl. Phys. B. 711 367, [arXiv:hep-th/0410215]
[20] Buchbinder I. L., Krykhtin V. A., Reshetnyak A. A. 2007 Nucl. Phys. B. 787 211.
[21] Moshin P. Yu., Reshetnyak A. A. 2007 JHEP 10 040, [arXiv:0707.0386[hep-th]].
[22] Buchbinder I. L. Reshetnyak A. A. 2012 Nucl. Phys. B 862 270.
[23] Reshetnyak A. A. 2013 Nucl. Phys. B 869 523270, [arXiv:1211.1273[hep-th]]
[24] Yu. M. Zinoviev, 2009 Nucl. Phys. B 821 21
[25] Alkalaev K. 2004 Theor. Math. Phys. 140 1253 [hep-th/0311212]
[26] Dixmier J. 1974 Algebres enveloppantes (Gauthier-Villars) Paris.
Issue: 12, 2014
Series of issue: Issue 12
Pages: 213 — 218
Downloads: 790