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The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young
tableaux Y [ŝ1, ŝ2] having 2 columns are considered for Bose particles propagated on an arbitrary dimensional Minkowski
space-time. The procedure is based, first, on using of an auxiliary Fock space generated by Fermi oscillators (antisymmetric
basis), second, on construction of the Verma module and finding auxiliary oscillator realization for sl(2)⊕sl(2) algebra which
encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Application of an universal
BRST-BFV approach permits to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the
free dynamics of both massless and massive mixed-antisymmetric bosonic fields of any spin with appropriate number of
gauge and Stukelberg fields. The general prescription possesses by the possibility to derive constrained Lagrangians with
only BRST-invariant extended algebraic constraints which describes the Poincare group irreducible representations in terms
of mixed-antisymmetric tensor fields with 2 group indices.
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1 Introduction

The belief to reconsider the problems of an unique
description of variety of elementary particles and
known interactions maybe resolved within higher-spin
(HS) field theory whose revealing together with the
proof of supersymmetry display, and finding a new in-
sight on origin of Dark Matter remains by the aims in
LHC experiment programm ( [1]). Because of the exis-
tence of so-called tensionless limit in the (super)string
theory [2] which operates with an infinite tower of HS
fields with integer and half-integer spins the HS field
theory may be considered both of superstring theory
part and as an method to study a superstring the-
ory structure. On present state of HS field theory
we recommend to know from reviews [3–6]. The pa-
per considers the results of constructing Lagrangian
formulations (LFs) for free integer both massless and
massive mixed-antisymmetry tensor HS fields on flat
R1,d−1-space-time subject to arbitrary Young tableaux
(YT) with 2 columns Y [ŝ1, ŝ2] for ŝ1 ≥ ŝ2 in Frons-
dal metric-like formalism on a base of BFV-BRST ap-
proach [7], and precesses the results which appear soon
in [8] (as well as for fermionic mixed-antisymmetric
spin-tensor HS fields on R1,d−1-space-time subject to
arbitrary Y [n̂1 + 1

2 , n̂2 + 1
2 ] in [9]).

The irreducible Poincare or (Anti)-de-Sitter
((A)dS) group representations in the constant cur-
vature space-times may be described both by mixed-
symmetric HS fields subject to arbitrary YT with
k rows, Y (s1, ..., sk), (case of symmetric basis) deter-
mined by more than one spin-like parameters si [10,11]

and, equivalently, by mixed-antisymmetric tensor or
spin-tensor fields subject to arbitrary YT now with
l columns, Y [ŝ1, ..., ŝl], (case of antisymmetric basis)
with integers or half-integers ŝ1 ≥ ŝ2 ≥ ... ≥ ŝl having
a spin-like interpretation [8,9]. Both mixed-symmetric
and mixed-antisymmetric HS fields appear for d > 4
space-time dimensions, in addition to totally sym-
metric and antisymmetric irreducible representations
of Poincare or (A)dS algebras. Whereas for the lat-
ter ones and mixed-symmetric HS fields case the LFs
both for massless and massive free higher-spin fields
is well enough developed [12–16] as well as on base of
BFV-BRST approach, e.g. in [17–24], for the mixed-
antisymmetric case the problem of their field-theoretic
description has not yet solved except for constrained
bosonic fields subject to Y [ŝ1, ŝ2] on the level of the
equations of motion only [25] in so-called ”frame-like”
formulation.

We use, first, the conventions for the metric tensor
ηµν = diag(+,−, ...,−), with Lorentz indices µ, ν =
0, 1, ..., d− 1, second, the notation ε(A), gh(A) for the
respective values of Grassmann parity and ghost num-
ber of a quantity A, and denote by [A, B} the super-
commutator of quantities A,B, which for theirs defi-
nite values of Grassmann parities is given by [A ,B} =
AB − (−1)ε(A)ε(B)BA.

2 Derivation of integer HS symmetry super-
algebra on R1,d−1

We consider a massless integer spin irreducible
representation of Poincare group in a Minkowski
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space R1,d−1 which is described by a tensor field
Φ[µ1]ŝ1 ,[µ

2]ŝ2
≡ Φµ1

1...µ
1
ŝ1
,µ2

1...µ
2
ŝ2

of rank ŝ1 + ŝ2 and

generalized spin s ≡ (s1, ..., ss2 ; ss2+1, ..., ss1) =
(2, 2, ..., 2; 1, ..., 1), (with omitting later a sign ”ˆ” un-
der ŝi and s1 ≥ s2 > 0, s1 ≤ [d/2]) subject to a YT
with 2 columns of height s1, s2, respectively

Φ[µ1]s1 ,[µ
2]s2
←→

µ1
1 µ2

1

· ·
µ1
s2 µ2

s2
· · ·
µ1
s1

. (1)

This field is antisymmetric with respect to the permu-
tations of each type of Lorentz indices µi, and obeys
to the Klein-Gordon (2), divergentless (3), traceless (4)
and mixed-antisymmetry equations (5):

∂µ∂µΦ[µ1]s1 ,[µ
2]s2

= 0, (2)

∂µ
i
liΦ[µ1]s1 ,[µ

2]s2
= 0, for 1 ≤ li ≤ si, i = 1, 2, (3)

ηµ
1
l1
µ2
l2 Φ[µ1]s1 ,[µ

2]s2
= 0, for 1 ≤ li ≤ si, (4)

Φ
[[µ1]s1 ,µ

2
1...µ

2
l2−1︸ ︷︷ ︸µ2

l2
]...µ2

s2

= 0, (5)

where the bracket below in (5) denotes that the indices
in it are not included into antisymmetrization, i.e. the
antisymmetrization concerns only indices [µ1]s1 , µ

2
l2

in

[[µ1]s1 , µ
2
1...µ

2
l2−1︸ ︷︷ ︸µ2

l2
].

Combined description of all integer spin mixed-
antisymmetric ISO(1, d − 1) group irreps can be re-
formulated with help of an auxiliary Fock space Hf ,
generated by 2 pairs of fermionic creation aiµi(x) and

annihilation aj+νj (x) operators (in antisymmetric basis),

i, j = 1, 2, µi, νj = 0, 1..., d − 1: aiµi , a
j+
νj = −ηµiνjδij

and a set of constraints for an arbitrary string-like vec-
tor |Φ〉 ∈ Hf ,

|Φ〉 =

[d/2]∑
s1=0

s1∑
s2=0

Φ[µ1]s1 ,[µ
2]s2

(x)

2∏
i=1

si∏
li=1

a
+µili
i |0〉, (6)

(
l0, l

i, l12, ti1j1
)
|Φ〉 = 0, l0 = ∂µ∂µ, (7)(

li, l12, ti1j1
)

=
(
−iaiµ∂µ, 1

2a
1
µa

2µ, a1+
µ a2µ

)
. (8)

The set of 3 even and 2 odd, li, primary constraints
(7), (8) with {oα} =

{
l0, l

i, l12, t12
}

, because of the
property of translational invariance of the vacuum,
∂µ|0〉 = 0, are equivalent to (2)–(5) for all possible
heights s1 ≥ s2. In turn, when we impose on |Φ〉 the
additional to (7), (8) constraints with number particles
operators, gi0,

gi0|Φ〉 = (si − d
2 )|Φ〉, gi0 = − 1

2 [ai+µ , aµi], (9)

these combined conditions are equivalent to Eqs. (2)–
(5) for the field Φ[µ1]s1 ,[µ

2]s2
(x) with given spin s =

(2, 2, ..., 2, 1, ..., 1).

The procedure of LF construction implies the pro-
perty of BFV-BRST operator Q, Q = Cαoα+more, to
be Hermitian, that is equivalent to the requirements:
{oα}+ = {oα} and closedness for {oα} with respect to
the supercommutator multiplication [ , }. Evidently,
the set of {oα} violates above conditions. To provide
them we consider in standard manner an scalar product
on Hf ,

〈Ψ|Φ〉 =

∫
ddx

[d/2]∑
s1=0

s1∑
s2=0

[d/2]∑
p1=0

p1∑
p2=0

〈0|
( 2,pj∏

(j,mj)=(1,1)

a
νjmj

+

j

)+

×Ψ∗[ν1]p1 ,[ν
2]p2

Φ[µ1]s1 ,[µ
2]s2

(2,si)∏
(i,li)=(1,1)

a
+µili
i |0〉. (10)

As the result, the set of {oα} extended by means of the
operators,(
li+, l12+, t12+

)
=
(
−iai+µ ∂µ, 1

2a
2+
µ a1µ+, a2+

µ a1µ
)
, (11)

is closed with respect to Hermitian conjugation, with

taken into account of (l+0 , g
i
0
+

) = (l0, g
i
0). It is rather

simple exercise to see the second requirement is fulfilled
as well if the number particles operators gi0 will be in-
cluded into set of all constraints oI having therefore
the structure,

{oI} = {oα, o+
α ; gi0} ≡ {oa, o+

a ; l0, l
i, li+; gi0}. (12)

Together the sets {oa, o+
a } in the Eq. (12), for {oa} =

{l12, t12} and {oA} = {l0, li, li+}, may be consid-
ered from the Hamiltonian analysis of the dynamical
systems as the operator respective 4 second-class and 5
first-class constraints subsystems among {oI} for topo-
logical gauge system (i.e. with zero Hamiltonian) be-
cause of,

[oa, o
+
b } = f caboc + ∆ab(g

i
0), [oI , oB} = fCIBoC . (13)

Here the constants f cab, f
C
IB are the antisymmetric with

respect to permutations of lower indices and quantities
∆ab(g

i
0) form the non-degenerate 4×4 matrix ‖∆ab‖ in

the Fock space Hf on the surface Σ ⊂ Hf : ‖∆ab‖|Σ 6=
0, determined by the equations, (oa, l0, l

i)|Φ〉 = 0.

Explicitly, operators oI satisfy to the Lie-algebra
commutation relations, [oI , oJ ] = fKIJoK , fKIJ =
−(−1)ε(oI)ε(oJ )fKJI with the structure constants fKIJ be-
ing used in the Eq. (13), and determined from the
multiplication Table 1.
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Table 1. HS symmetry superalgebra A(Y [2],R1,d−1)

[ ↓,→} t12 t+12 l0 li li+ l12 l12+ gi0
t12 0 g1

0 − g2
0 0 l2δi1 −l1+δ2i 0 0 −F 12,i

t+12 g2
0 − g1

0 0 0 l1δi2 −l+2 δi1 0 0 F 12,i+

l0 0 0 0 0 0 0 0 0

lj −l2δj1 −l1δj2 0 0 l0δji 0 1
2
l[2+δ1]j ljδij

lj+ l1+δj2 l+2 δ
j1 0 l0δji 0 1

2
l[1δ2]j 0 −lj+δij

l12 0 0 0 0 1
2
l[2δ1]i 0 − 1

4
(g1

0 + g2
0) l12

l12+ 0 0 0 1
2
l[1+δ2]i 0 1

4
(g1

0 + g2
0) 0 −l12+

gj0 F 12,j −F 12j+ 0 −liδij li+δij −l12 l12+ 0

Note, that in the Table 1, the squared brackets for
the indices i, j in the quantity A[iBj]k mean the anti-
symmetrization A[iBj]k = AiBjk−AjBik and F 12,i =
t12(δi1 − δi2), F 12,i+ = t12+(δi1 − δi2). We call the
superalgebra of the operators oI as integer higher-spin
symmetry algebra in Minkowski space with a YT having
2 columns and denote it as A(Y [2],R1,d−1).

The structure of A(Y [2],R1,d−1) appears by insuffi-
cient to construct BRST operator Q with respect to its
elements oI which should generate correct Lagrangian
dynamics due to second-class constraints {oa} presence
in it. Therefore, we should to convert into enlarged set
of operators OI with only first-class constraints.

3 Deformed HS symmetry superalgebra for
YT with 2 columns

We apply an additive conversion procedure devel-
oped within BRST method, (see e.g. [17]), implying the
enlarging of oI to OI = oI + o′I , with additional parts
o′I supercommuting with all oI and determined on a
new Fock space H′. Now, the elements OI are given
on Hf⊗H′ so that a condition for OI , [OI , OJ ] ∼ OK ,
leads to the same algebraic relations for OI and o′I as
those for oI .

Because of only the generators which do not con-
tain space-timer derivatives, ∂µ, are the second-class

constraints in A(Y [2],R1,d−1), i.e. {o′a, o′
+
a }. There-

fore, one should to get new operator realization of
this subalgebra. Note, this subalgebra is isomorphic
to sl(2)⊕ sl(2).

An auxiliary oscillator realization of sl(2)⊕sl(2) al-
gebra can be found by using Verma module concept [26]
and explicitly derived in the form

t+′12 = b+2 , l+12

′
= b+1 ,

gi′0 = h1 + b+1 b1 + (−1)ib+2 b2,

l′12 = − 1
4 (h1 + h2 + b+1 b1)b1, (14)

t′12 = −(h2 − h1 + b+2 b2)b2,

with new 2 pairs of bosonic creation (annihilation) op-
erators b+i (bi), with non-trivial commutation relations,
[bi, b

+
j ] = δij . The operators t+′12 and t′12; l+′12 and l′12

are respectively Hermitian conjugated to each other, as
well as the number particles operators gi′0 is Hermitian
with help of the Grassmann-even operator (K ′)+ = K ′

which should be found from the system of 4 equations,

〈Ψ|K ′t(l)′12|Φ〉 = 〈Φ|K ′t(l)+′
12 |Ψ〉∗,

〈Ψ|K ′gi′0 |Φ〉 = 〈Φ|K ′gi′0 |Ψ〉∗, (15)

whose solution may be presented in the form,

K ′ =

∞∑
ni=0

(−1)n1+n2Ch1+h2
(n1)Ch2−h1

(n2)

4n1n1!n2!(h1 + h2 + n1)(h2 − h1 + n2)

×|n1, n2〉〈n1, n2|, for Ch(n) =

n∏
i=0

(h+ i), (16)

and |n1, n2〉 = (b+1 )n1(b+2 )n2 |0〉.

4 BRST-BFV operator and Lagrangian for-
mulations

Because of algebra of OI under consideration is a
Lie superalgebra A(Y [2],R1,d−1) the BRST-BFV op-
erator Q′ is constructed in the standard way

Q′ = OICI + 1
2C

ICJfKJIPK(−1)ε(OK)+ε(OI) (17)

with the constants fKJI from the Table 1, constraints
OI = (l0, l

+
i , li; L12, L

+
12, T12, T+

12, G
i
0), fermionic

[bosonic] ghost fields and conjugated to them momenta
(CI ,PI) =

(
(η0,P0); (η12,P+

12); (η+
12,P12j); (ϑ12, λ

+
12);

(ϑ+
12, λ12); (ηiG,P

i
G)
)
, [(q+

i , pi), (qi, p
+
i )] with non-

vanishing (anti)commutators

{ϑ12, λ
+
12} = {η12,P+

12} = 1, [qi, p
+
j ] = δij (18)

and for zero-mode ghosts {η0,P0} = ı, {ηiG ,P
j
G} = ıδij .

The ghosts possess the standard ghost number distri-
bution, gh(CI) = −gh(PI) = 1 =⇒ gh(Q′) = 1. There-
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fore, BRST-BFV operator Q′ and Q are determined as

Q′ = Q+ ηiG(σi + hi) + BiPiG, with some Bi, (19)

Q = η0L0 + iqiq
+
i P0 +∆Q, ∆Q=

(
qil

+
i +η12L

+
12 (20)

+ϑ12T
+
12 + 1

2εijη12q
+
i p

+
j + ϑ12(q+

2 p1 + q1p
+
2 ) + h.c.

)
,

σi + hi = Gi0 − q+
i pi − qip

+
i + η+

12P12 − η12P+
12

+(−1)i(ϑ+
12λ12 − ϑ12λ

+
12), (21)

with real εij = −εji, ε12 = 1. The property of Q′ to be
Hermitian in Htot, Htot = Hf⊗H′ ⊗Hgh is determined
by the rule

Q′+K = KQ′ where K = 1⊗K ′ ⊗ 1gh. (22)

To construct Lagrangian formulation for bosonic HS
fields subject to Y [s1, s2] we choose a representation
of Htot: (qi, pi, η12, ϑ12,P0, P12, λ12,PiG)|0〉 = 0, and
suppose that the field vectors |χ〉 as well as the gauge
parameters |Λ〉 do not depend on ghosts ηiG: extend
our basic vector |Φ〉 (6) given in Hf to

|χ〉 =

∞∑
{n}b=0

1∑
{n}f=0

η
nη0
0 η

+nη12
12 ϑ

+nϑ12
12 P+nP12

12 λ
+nλ12
12

×
2∏
i=1

(ηGi )niq
+nqi
i p

+npi
i b

+nbi
i

∣∣Φ(ai
+){n}f{n}b〉 , (23)

where the integers {n}b = nqi , npi , nbi ∈ N and {n}f
= nη0 , nη12 , nP12 , nϑ12 , nλ12 ∈ Z2.

From the BRST-like equation, determining the
physical vector (23) and from the set of reducible
gauge transformations, homogeneous in ghost number
Q′|χ0〉 = 0 and the BRST complex of the reducible
gauge transformations, δ|χ〉 = Q′|Λ0〉, δ|Λ0〉 = Q′|Λ1〉,
. . ., δ|Λ(r−1)〉 = Q′|Λ(r)〉, for gh(|χ〉) = gh(|Λ(k)〉)+k+
1 = 0 the decomposition in ηiG leads to the relations:(
Q|χ0〉, δ|χ0〉, ..., δ|Λ(r−1)〉

)
=
(
0, Q|Λ0〉, ..., Q|Λ(r)〉

)
,

[σi + hi]
(
|χ0〉, |Λ0〉, . . . , |Λ(r)〉

)
= 0, (24)

with r = sl+s2 being the stage of reducibility both for
massless and for the massive bosonic HS field. Resolu-
tion the spectral problem from (24) yields the eigenvec-
tors of the operators σi: |χ0〉[n]2 , |Λ0〉[n]2 , . . ., |Λr〉[n]2 ,
for [n]2 = [n1, n2], n1 ≥ n2 ≥ 0 and corresponding
eigenvalues of the parameters hi (for massless HS fields
i = 1, 2),

−hi = ni −
d

2
− (−1)i , n1,∈ Z, n2 ∈ N0 . (25)

One can show, first, the operator Q is nilpotent on the
subspaces determined by the solution for (24), second,
to construct Lagrangian for the field corresponding to
a definite YT (1) we must put ni = si, and, third,
one should substitute hi corresponding to the chosen

ni (25) into Q (19) and relations (24). Thus, the equa-
tion of motion (24) corresponding to the field with a
given Y [s1, s2] has the form

Q[s]2 |χ
0〉[s]2 = 0, for|χ0〉[s]2 ({n}f={n}b=0) = |Φ〉[s]2 . (26)

Because of commutativity [Q, σi} = 0 we have joint
system of proper eigen-functions |χl〉[s1,s2] for l =
0, 1, ..., s1+s2+1 and eigen-values hi(si) so that the se-
quence of reducible gauge transformations for the field
with given [s1, s2] are described (for k = 1, ...,

∑2
i=1 si)

by:

δ|χ0〉[s]2 = Q[s]2 |Λ
(0)〉[s]2 , δ|Λ

(0)〉[s]2 = Q[s]2 |Λ
(1)〉[s]2 ,

δ|Λ(k−1)〉[s]2 = Q[s]2 |Λ
(k)〉[s]2 , δ|Λ

(s1+s2)〉[s]2 = 0. (27)

The equation of motion (26) are Lagrangian with ap-
propriate numbers of auxiliary HS fields and derived
from a gauge-invariant Lagrangian action (for K[s]2 =
K|hi=hi(s))

S[s]2 =

∫
dη0[s]2〈χ

0|K[s]2Q[s]2 |χ
0〉[s]2 . (28)

5 Constrained lagrangian formulations

Let us list the key points of the derivation of the
constrained LF from unconstrained one for the same
bosonic field subject to Y [s1, s2]

1. reduction of HS symmetry algebra
A(Y [2],R1,d−1) → Ar(Y [2],R1,d−1) =
A(Y (k),R1,d−1)

sl(2)⊕ sl(2
= {l0, li, l+j };

2. absence of the 2nd class constraints for (m = 0)
=⇒ absence of the conversion procedure;

3. reduction of Q′ (19) to
Qr = η0l0 +

∑
i(qil

+
i + q+

i li + ıq+
i q

iP0);

4. presence 2 off-shell BRST extended by
qi, q

+
i , p

i, p+
i constraints L12, T12, and spin ope-

rator

σir = gi0 + qip
+
i + q+

i pi : [A, Qr] = 0, (29)

for A ∈ {L12, T12, σ
i
r} which look explicitly as

L12 = l12 + 1
2εijqipj , T12 = t12 + q2p

+
1 + q+

1 p2. (30)

The proper constrained Lagrangian action is deter-
mined by the relations

Sr[s]2 =

∫
dη0 [s]2〈χ

0
r|Q|χ0

r〉[s]2 , (L12, T12)|χkr 〉 = 0. (31)
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6 Conclusion

Thus, we have constructed gauge-invariant uncon-
strained and constrained Lagrangian descriptions of
free integer HS fields belonging to an irreducible rep-
resentation of the Poincare group ISO(1, d − 1) with
the arbitrary Young tableaux having 2 columns in the
“metric-like” formulation. The results of this study
are the general and obtained on the base of universal

method which is applied by the unique way to both
massive and massless bosonic HS fields with a mixed
antisymmetry in a Minkowski space of any dimension.
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ÁÐÑÒ-ÁÔÂ ËÀÃÐÀÍÆÅÂÛ ÔÎÐÌÓËÈÐÎÂÊÈ ÄËß ÏÎËÅÉ ÂÛÑØÈÕ ÑÏÈÍÎÂ,
ÏÎÄ×ÈÍÅÍÍÛÕ ÄÈÀÃÐÀÌÌÀÌ ÞÍÃÀ Ñ ÄÂÓÌß ÑÒÎËÁÖÀÌÈ

Ðàññìîòðåíû äåòàëè ëàãðàíæåâà îïèñàíèÿ íåïðèâîäèìûõ ïðåäñòàâëåíèé âûñøåãî öåëîãî ñïèíà ãðóïïû Ïóàíêà-
ðå ñ òàáëèöåé Þíãà Y [ŝ1, ŝ2], èìåþùèõ 2 ñòîëáöà äëÿ Áîçå-÷àñòèö, ðàñïðîñòðàíÿþùèõñÿ â ïðîñòðàíñòâå-âðåìåíè
Ìèíêîâñêîãî ïðîèçâîëüíîé ðàçìåðíîñòè. Ïðîöåäóðà îñíîâàíà, âî-ïåðâûõ, íà èñïîëüçîâàíèè âñïîìîãàòåëüíîãî ïðî-
ñòðàíñòâà Ôîêà, ïîðîæäåííîãî ôåðìèîííûìè îñöèëëÿòîðàìè (àíòèñèììåòðè÷íûé áàçèñ), âî-âòîðûõ, íà ïîñòðîåíèè
ìîäóëÿ Âåðìà è íàõîæäåíèè âñïîìîãàòåëüíîé îñöèëëÿòîðíîé ðåàëèçàöèè äëÿ àëãåáðû sl(2)⊕sl(2), êîòîðàÿ êîäèðóåò
ïîäñèñòåìó ñâÿçåé âòîðîãî ðîäà â ñóïåðàëãåáðó ñèììåòðèè âûñøèõ ñïèíîâ. Ïðèìåíåíèå óíèâåðñàëüíîãî ÁÐÑÒ-ÁÔÂ
ïîäõîäà ïîçâîëÿåò âîñïðîèçâåñòè êàëèáðîâî÷íî-èíâàðèàíòíûå ëàãðàíæèàíû ñ ïðèâîäèìûìè êàëèáðîâî÷íûìè ñèì-
ìåòðèÿìè, îïèñûâàþùèå ñâîáîäíóþ äèíàìèêó êàê áåçìàññîâûõ, òàê è ìàññèâíûõ ñìåøàííî-àíòèñèììåòðè÷íûõ áî-
çîííûõ ïîëåé ëþáîãî ñïèíà ñ ïîäõîäÿøèì íàáîðîì êàëèáðîâî÷íûõ è Øòþêåëüáåðãîâûõ ïîëåé. Îáùàÿ ïðåñêðèïöèÿ
îáëàäàåò âîçìîæíîñòüþ âîñïðîèçâåñòè ëàãðàíæèàíû ñ ÁÐÑÒ-èíâàðèàíòíûìè ðàñøèðåííûìè àëãåáðè÷åñêèìè ñâÿ-
çÿìè, êîòîðûå îïèñûâàþò íåïðèâîäèìûå ïðåäñòàâëåíèÿ ãðóïïû Ïóàíêàðå â òåðìèíàõ ñìåøàííî-àíòèñèììåòðè÷íûõ
òåíçîðíûõ ïîëåé ñ 2 ãðóïïàìè èíäåêñîâ.

Êëþ÷åâûå ñëîâà: âûñøèå ñïèíû, ÁÐÑÒ îïåðàòîð, Ëàãðàíæåâà ôîðìóëèðîâêà, ìîäóëü Âåðìà, êàëèáðîâî÷íàÿ
èíâàðèàíòíîñòü.
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