THE CASIMIR ENERGY FOR TWO AND THREE LAYER OF GRAPHENS
The Casimir energy of system of parallel conductive planes with constant conductivity is considered. General form of the Casimir energy for two and three planes is obtained. For the case of equal interplane distances the energy is proportional to inverse third power of distance. For small conductivity the energy does not depend on the Planck constant and velocity of light. The Casimir energy of planes with ideal conductivity is the sum of the Casimir energy of the neighboring planes.
Keywords: Casimir energy, zeta-function, zero point energy, graphene
References:
[1] Casimir H. B. G. 1948 Proc. K. Ned. Akad. Wet. 51 793.
[2] Bordag M., Mohideen U., and Mostepanenko V. M. 2001 Phys. Rep. 353 1.
[3] Milton K. A., 2004 J. Phys. A: Math. Gen. 37 R209.
[4] Buhmann S. Y. and Welsch D. -G. 2007 Prog. Quantum Electron. 31 51.
[5] Klimchitskaya G. L., Mohideen U., and Mostepanenko V. M. 2009 Rev. Mod. Phys. 81 1827.
[6] Milton K. A. 2001 Casimir Effect: Physical Manifestation of Zero-Point Energy (World Scientific, Singapore) 320 p.
[7] Bordag M., Klimchitskaya G., Mohideen U., Mostepanenko V. 2009 Advances in the Casimir Effect (Oxford University Press, Oxford) 749 p.
[8] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A. 2004 Science 306 666.
[9] Falkovsky L. A. and Varlamov A. A. 2007 Eur. Phys. J. B 56 281.
[10] Kuzmenko A., van Heumen E., Carbone F., and van der Marel D. 2008 Phys. Rev. Lett. 100 117401.
[11] Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., and Geim A. K. 2008 Science 320 1308.
[12] Drosdoff D. and Woods L. M. 2010 Phys. Rev. B 82 155459.
[13] Khusnutdinov N., Drosdoff D., and Woods L. M. 2014 Phys. Rev. D 89 085033.
Issue: 12, 2014
Series of issue: Issue 12
Pages: 135 — 138
Downloads: 745