
N. Khusnutdinov, R. Kashapov. The Casimir energy for two and three layer of graphens

UDC 530.1; 539.1

THE CASIMIR ENERGY FOR TWO AND THREE LAYER OF GRAPHENS

N. Khusnutdinov, R. Kashapov

Institute of Physics, Kazan Federal University, ul. Kremlevskaya, 18, Kazan 420008, Russia.

E-mail: nail.khusnutdinov@gmail.com

The Casimir energy of system of parallel conductive planes with constant conductivity is considered. General form of the
Casimir energy for two and three planes is obtained. For the case of equal interplane distances the energy is proportional
to inverse third power of distance. For small conductivity the energy does not depend on the Planck constant and velocity
of light. The Casimir energy of planes with ideal conductivity is the sum of the Casimir energy of the neighboring planes.
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1 Introduction

Since the remarkable paper of Casimir [1] which
was published more then 60 years ago, the signi�cant
progress was done both experimental justi�cation and
theoretical description of the e�ect which was called as
Casimir e�ect. At the presence there are many reviews
[2�5] and books [6, 7] in which this phenomenon is
considered from di�erent points of view. Interaction
between bodies at short distances when retardation
of electromagnetic �eld is neglected usually called as
van der Waals interaction. At greater distances where
retardation is important the interaction usually called
the Casimir force. In particular case of two atom, the
potential of interaction falls down as seventh power of
distance for Casimir case and as sixth power for short
distance.

In the paper we analyze in detail in the framework
of zeta-function approach the Casimir energy for
two and three parallel conductive planes. The real
physical object for which these calculations have direct
application is graphene � monolayer of carbon atoms
[8]. Graphene is conductor with constant conductivity
σ = e2/4 (e � electron charge) up to energy Et ∼
3ýÂ (corresponding frequency ωt ∼ 4.5PHz and
wavelength λt ∼ 413nm). It was predicted theoretically
[9] and experimentally established in Refs. [10, 11].
Here we consider simple model of conductivity � it is
constant for any frequency.

The dimension of conductivity for two dimensional
case is the same as velocity. For this reason in
relativistic theory the dimensionless parameter η =
2πσ/c appears which is for graphene πe2/2~c =
πα/2 ≈ 0.0115, where α is the �ne-structure constant.

Hereafter we use units with ~ = c = 1.

2 TE and TM Electromagnetic modes

Let us set planes perpendicular to z axes. Due to
symmetry of the problem we represent the �eld in the
following form

E = e(z)eikxx+ikyy−iωt, H = h(z)eikxx+ikyy−iωt.

The Maxwell equations out of the planes have no
currencies and charges and we may express all
components in terms on single component.

TE mode (ez = 0):

ex = −ωky
ck2
⊥
hz, hx =

ikx
k2
⊥
h′z,

ey = +
ωkx
ck2
⊥
hz, hy =

iky
k2
⊥
h′z,

h′′z = k2hz.

TM mode (hz = 0):

ex =
ikx
k2
⊥
e′z, hx = +

ωky
ck2
⊥
ez,

ey =
iky
k2
⊥
e′z, hy = −ωkx

ck2
⊥
ez,

e′′z = k2ez.

Here k2
⊥ = k2

x + k2
y, k

2 = k2
⊥ − ω2 and prime means

derivative with respect of z.
The boundary conditions at the plane at z = a read

TE : [hz]r = 0, [h′z]r = 4πiσωhz|r,

TM : [e′z]r = 0, [ez]r = −4πiσ

ω
e′z|r, (1)

where [f(z)]r = f(r − 0)− f(r + 0).
Therefore for each plane we have two equations for

each modes. For n parallel planes we have 2n equations.
There are n−1 intervals between planes and in each gap
there are two constants in general solution. Therefore,
summary amount of constants is 2n−2. There are also
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two half-subspaces out of planes and in each subspace
solution is de�ned by single constant. Totally we 2n
constants obeying 2n equations. Solution of this system
exists if and only if the main determinant equals to
zero. This condition allow us to obtain in manifest form
the function Ψ which we need to calculate contribution
of each mode to the energy (see [7])

ETE,TM(s) = −M2s cosπs

2π

∫∫
d2k

(2π)2

×
∫ ∞

0

dλλ1−2s ∂

∂λ
ln ΨTE,TM(iλ). (2)

The total energy is sum E(s) = ETE(s) + ETM(s).

3 Two planes

For two planes we obtain

E(2) =
Q(2)(η)

d3
, Q(2) = Q

(2)
TE +Q

(2)
TM, (3)

where

Q
(2)
TE (η) =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx ln

(
1− η2x2e−y

(1 + ηx)2

)
,

Q
(2)
TM(η) =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx ln

(
1− η2e−y

(x+ η)2

)
.

Therefore, the Casimir energy proportional to inverse
third power of distance between planes.

In the limit of in�nite conductivity (ideal
conductor) η →∞ we obtain

E(2) = − π2

720d3
, (4)

in full agreement with Casimir result. For small
conductivity, η = 2πσ/c → 0 the main contribution
comes from TM mode:

E(2) = − a2η

2πd3
= −a2σ

d3
, (5)

where

a2 = − 1

16π

∫ ∞
0

y2dy

∫ ∞
0

dx ln

(
1− e−y

(1 + x)2

)
≈ 0.0407509 . . . ,

and ζR(a) is Riemann zeta-function. TE mode gives
quadratic over conductivity contribution. For graphene
conductivity we obtain

E(2) = − e2b

32πd3
, (6)

where b = 8πa2 ≈ 1.0241 . . .. It is important to note
that this expression has the same form in dimensional
variables and it does not depend on the Planck
constant and velocity of light. This resul was obtained
in Refs. [12, 13] on the basis of di�erent calculations.

4 Three planes

For three plane with equal interplane distance d21 =
d32 = d we obtain the following expression for energy

E(3) =
Q(3)(η)

d3
, Q(3) = Q

(3)
TE +Q

(3)
TM, (7)

where

Q
(3)
TE =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx

× ln

(
1− η2x2e−y

(1 + ηx)2

{
2 +

1− ηx
1 + ηx

e−y
})

,

Q
(3)
TM =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx

× ln

(
1− η2e−y

(x+ η)2

{
2 +

x− η
x+ η

e−y
})

.

For small conductivity η � 1 one has

E(3) = − a3η

2πd3
= −a3σ

d3
, (8)

where

a3 = − 1

16π

∫ ∞
0

y2dy

∫ ∞
0

dx

× ln

(
1− e−y

(x+ 1)2

{
2 +

x− 1

x+ 1
e−y
})

= 0.0832892 . . . .

Let us consider in�uence third plane for energy of
two planes. We normalize distances on the distance
between �rst and second planes d = d21 and extract
the part corresponding for two planes (3):

E(3) = E(2)(d)4(η, q32),

4(η, q32) =
Q

(3)
TE (η, q32) +Q

(3)
TM(η, q32)

Q
(2)
TE (η) +Q

(2)
TM(η)

,

where

Q
(3)
TE =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx ln

(
1− η2x2

(1 + ηx)2{
e−y + e−q32y +

1− ηx
1 + ηx

e−(1+q32)y

})
,

Q
(3)
TM =

1

32π2

∫ ∞
0

y2dy

∫ 1

0

dx ln

(
1− η2

(x+ η)2{
e−y + e−q32y +

x− η
x+ η

e−(1+q32)y

})
,

and q32 = d32/d.
Numerical calculation shows that 4 depends weak

on the conductivity if third plane is in the distance
greater then distance between �rst and second planes
d3 − d2 ≥ d.
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Figure 1. Dependence 4 on the dimensionless distance q32 = d32/d (d is distance between 1st and 2nd planes, d32 – distance

between 2nd and 3rd planes) for two limit cases of conductivity η = 0 and η =∞ (ideal case)

If third plane is closer the situation is changed and
main contribution comes from second and third planes
and first plane plays the role of additional third plane.
Dependence of the 4 is shown on the Fig. 1 for two
limit cases of conductivity η = 0 and η = ∞ (ideal
case). It is easy to see that curves weakly differ each
other.

Let us set third plane far from first two planes
q32 � 1. In this case

4 ≈ 1 +
A(η)

q3
32

,

and

E(3) = E(2)(d21) +A(η)E(2)(d32).

Here

A(η) =

∫ ∞
0

y2dy

∫ ∞
0

dx ln

{(
1− 2η2x2e−y

(1 + ηx)(1 + 2ηx)

)
×
(

1− 2η2e−y

(x+ η)(x+ 2η)

)}
/

∫ ∞
0

y2dy

∫ ∞
0

dx

× ln

{(
1− η2x2e−y

(1 + ηx)2

)(
1− η2e−y

(x+ η)2

)}
.

The function A(η) monotone tends to unit A(η)η→∞ =
1 starting with A(0) = 1.3857 . . .. Therefore, third
plane gives additive contribution to the energy with
weight A(η).

5 Conclusion

Let us summarize the results obtained. We con-
sidered parallel conductive planes with constant con-
ductivity. We made calculations in manifest form for

two and three planes. Because conductivity σ has di-
mension of light it is combined with velocity of light
to dimensionless combination η = 2πσ/c. For the
case of same distances between planes there is the only
parameter with dimension of length – distant between
planes. Therefore, the energy for n parallel planes
should get the following form

E(n) =
~c
d3
Qn(η).

In the case of small conductivity η � σ we obtain

E(n) ≈ −~anσ
d3

,

where a2 = 0.0407 . . . , a3 = 0.0832 . . .. For the case of
graphene sheets the conductivity σ = e2/4~ the energy
does not depend on the Planck constant and velocity
of light

E(n) ≈ −ane
2

4d3
.

In the ideal case σ →∞ the Casimir energy is the
sum of Casimir energy of neighboring planes. The fi-
nite conductivity breaks this simple dependence and
the energy becomes complex function of distances dik
between planes i and k.
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Í. Õóñíóòäèíîâ, Ð. Êàøàïîâ

ÝÍÅÐÃÈß ÊÀÇÈÌÈÐÀ ÄËß ÄÂÓÕ È ÒÐÅÕ ÑËÎÅÂ ÃÐÀÔÅÍÀ

Ðàññìîòðåíà ýíåðãèÿ Êàçèìèðà äëÿ ñèñòåìû äâóõ è òðåõ ïàðàëëåëüíûõ ïëîñêîñòåé ñ ïîñòîÿííîé ïðîâîäèìîñòüþ.
Ïîëó÷åíî îáùåå âûðàæåíèå äëÿ ýíåðãèè Êàçèìèðà äëÿ äâóõ è òðåõ ïëîñêîñòåé. Â ñëó÷àå îäèíàêîâîãî ðàññòîÿíèÿ
ìåæäó ïëîñêîñòÿìè ýíåðãèÿ îáðàòíî ïðîïîðöèîíàëüíà òðåòüåé ñòåïåíè ðàññòîÿíèÿ ìåæäó ïëîñêîñòÿìè. Äëÿ ìàëîé
ïðîâîäèìîñòè ýíåðãèÿ íå çàâèñèò îò ïîñòîÿííîé Ïëàíêà è ñêîðîñòè ñâåòà. Ýíåðãèÿ Êàçèìèðà äëÿ ïëîñêîñòåé ñ
èäåàëüíîé ïðîâîäèìîñòüþ ðàâíà ñóììå ýíåðãèé Êàçèìèðà ñîñåäíèõ ïëîñêîñòåé.

Êëþ÷åâûå ñëîâà: ýíåðãèÿ Êàçèìèðà, äçåòà-ôóíêöèÿ, ýíåðãèÿ íóëåâûõ êîëåáàíèé, ãðàôåí.
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