FINITE BRST-ANTIBRST TRANSFORMATIONS FOR THE THEORIES WITH GAUGE GROUP
Following our recent results [P. Yu. Moshin, A. A. Reshetnyak, Nucl. Phys. B 888 (2014) 92], we discuss the notion of finite BRST-antiBRST transformations, with a doublet λa, a = 1, 2, of anticommuting (both global and field-dependent) Grassmann parameters. We find an explicit Jacobian corresponding to this change of variables in the theories with gauge group. Special field-dependent BRST-antiBRST transformations for the Yang-Mills path integral with sa-potential (functionally-dependent) parameters λa = saΛ generated by a finite even-valued functional Λ and the anticommuting generators sa of BRST-antiBRST transformations, amount to a precise change of the gauge-fixing functional. This proves the independence of the vacuum functional under such BRST-antiBRST transformations and leads to presence of modified Ward identities. The form of transformation parameters that induces a change of the gauge in the path integral is found and is exactly evaluated for connecting two arbitrary Rξ-like gauges. The finite field-dependent BRST-antiBRST transformations are used to generalize the Gribov horizon functional h0, in the Landau gauge in BRST-antiBRST setting, in the Gribov– Zwanziger model and to find hξ corresponding to general Rξ-like gauges in the form compatible with gauge-independent S-matrix.
Keywords: gauge theories, BRST-antiBRST Lagrangian quantization, Yang-Mills theory, Gribov–Zwanziger model, field-dependent BRST-antiBRST transformations
References:
[1] Becchi C., Rouet A. and Stora R. 1974 Phys. Lett. B 52 344.
[2] Tyutin I. V. 1975 Lebedev Inst. preprint No. 39 [arXiv:0812.0580[hep-th]].
[3] Curci G. and Ferrari R. 1976 Phys. Lett. B 63 91.
[4] Alvarez-Gaume L. and Baulieu L. 1983 Nucl. Phys. B 212 255.
[5] Spiridonov V. P. 1988 Nucl. Phys. B 308 527.
[6] Gitman D. M. and Tyutin I. V. 1990 Quantization of Fields with Constraints (Springer) 291 p.
[7] Faddeev L. D. and Slavnov A. A. 1990 Gauge Fields, Introduction to Quantum Theory (Benjamin, Reading) 232 p.
[8] Batalin I. A., Lavrov P. M. and Tyutin I. V. 1990 J. Math. Phys. 31 6.
[9] Batalin I. A., Lavrov P. M. and Tyutin I. V., 1990 J. Math. Phys. 31 1487.
[10] Batalin I. A., Lavrov P. M. and Tyutin I. V., 1991 J. Math. Phys. 32 532.
[11] Hull C. M. 1990 Mod. Phys. Lett. A 5 1871.
[12] Joglekar S. D. and Mandal B. P. 1995 Phys. Rev. D 51 1919.
[13] Faddeev L. D. and Popov V. N. 1967 Phys. Lett. B 25 29.
[14] Lavrov P. and Lechtenfeld O. 2013 Phys. Lett. B 725 382 [arXiv:1305.0712[hep-th]].
[15] Gribov V. N., 1978 Nucl. Phys. B 139 1.
[16] Zwanziger D., 1989 Nucl. Phys. B 323 513.
[17] Sobreiro R. F. and Sorella S. P. 2005 JHEP 0506 054 [arXiv:hep-th/0506165].
[18] Dudal D., Capri M. A. L., Gracey J. A. et al. 2007 Braz. J. Phys. 37 320 [arXiv:1210.5651[hep-th]].
[19] Capri M. A. L., Granado D. R., Guimaraes M. S. et al. 2014 Phys. Rev. D [arXiv:1404.2573 [hep-th]].
[20] Gongyo S. and Iida H. 2014 Phys. Rev. D 89 [arXiv:1310.4877[hep-th]].
[21] Dudal D., Gracey J. A., Sorella S. P. et all, 2008 Phys. Rev. D 78 065047 [arXiv:0806.0348[hep-th]].
[22] Fradkin E. S. and Vilkovisky G. A. 1975 Phys. Lett. B 55 224; Batalin I. A. and Vilkovisky G. A. 1977 Phys. Lett. B 69 309.
[23] Henneaux M. 1985 Phys. Pep. 126 1.
[24] Batalin I. A., Lavrov P. M. and Tyutin I. V. 2014 Int. J. Mod. Phys. A [arXiv:1404.4154[hep-th]].
[25] Batalin I. A. and Vilkovisky G. A. 1981 Phys. Lett. B 102 27.
[26] Reshetnyak A. A. 2014 Int. J. Mod. Phys. A 29 1450184, [arXiv:1312.2092[hep-th]].
[27] Lavrov P., Lechtenfeld O. and Reshetnyak A. 2011 JHEP 1110 043.
[28] Moshin P. Yu. and Reshetnyak A. A. 2014 Nucl. Phys. B 888 92 [arXiv:1405.0790 [hep-th]].
[29] Moshin P. Yu. and Reshetnyak A. A. 2014 Phys. Lett B 739 110 [arXiv:1406.0179[hep-th]].
[30] Moshin P. Yu. and Reshetnyak A. A. [arXiv:1406.5086 [hep-th]].
[31] Moshin P. Yu. and Reshetnyak A. A. 2014 Int. J. Mod. Phys. A 29 1450159 [arXiv:1405.7549 [hep-th]].
[32] Batalin I. A., Lavrov P. M. and Tyutin I. V., [arXiv:1405.7218[hep-th]].
Issue: 12, 2014
Series of issue: Issue 12
Pages: 192 — 197
Downloads: 1001