TSPU Bulletin. 2014. 12 (153)

UDC 530.1; 539.1

BLACK HOLE ORBITS IN SUPERGRAVITY!
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Duality symmetries are used to organise symmetry orbits of supergravity black-hole solutions and to display their relation
to extremal (i.e. BPS) solutions at the limits of such orbits. An important technique for this analysis uses a timelike
dimensional reduction and exchanges the stationary black-hole problem for a nonlinear sigma-model problem. Families of
BPS solutions are characterized by nilpotent orbits under the duality symmetries, based upon a tri-graded or penta-graded

decomposition of the corresponding duality group algebra.
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The study of families of black-hole solutions is
of considerable current interest because it touches
upon many important issues in theoretical physics.
For example, the classification of BPS and non-BPS
black holes forms part of a more general study of
branes in supergravity and superstring theory. Branes
and their intersections, as well as their worldvolume
modes and attached string modes, are also key elements
in phenomenological approaches to the marriage of
string theory with particle physics phenomenology.
The related study of nonsingular and horizon-free BPS
gravitational solitons is also central to the “fuzzball”
proposal of BPS solutions as candidate black-hole
quantum microstates. Brane solutions are also the basis
for a number of early-universe cosmology candidates.

The search for supergravity solutions with assumed
Killing symmetries can be recast as a Kaluza-Klein
problem [1-3]. To see this, consider a 4D theory with
a nonlinear bosonic symmetry G4 (e.g.the “duality”
symmetry E; for maximal N = 8 supergravity). Scalar
fields take their values in a target space ®4 = G4/ Hy,
where H, is the corresponding linearly realized
subgroup, generally the maximal compact subgroup
of G4 (e.g.SU(8) C E7 for N = 8 SG). The search will
be constrained by the following considerations:

e We assume that a solution spacetime is
asymptotically flat or asymptotically Taub-NUT and
that there is a ‘radial’ function r which is divergent in
the asymptotic region, g"9,rd,r ~ 1+ O(r=1).

e Searching for stationary solutions amounts to
assuming that a solution possesses a timelike Killing
vector field k(). Lie derivatives with respect to ,, are
assumed to vanish on all fields. The Killing vector &,
will be assumed to have W := —g,,, k*k" ~ 1+O(r~1).
e We also assume asymptotic hypersurface
orthogonality, i.e.x”(0,k, — Opky) ~ O(r72). In

supergravity, black-holes, duality symmetries, sigma-model.

any vielbein frame, the curvature will then fall off
as Rapea ~ O(r73).

The 3D theory obtained after dimensional
reduction with respect to a timelike Killing vector
k;, will have an Abelian principal bundle structure,
with a metric
ds? = —W (dt + B;dz")? + W™ 'y,;da'da? (1)
where t is a coordinate adapted to the timelike Killing
vector r, and <y;; is the metric on the 3-dimensional
hypersurface M3 at constant ¢t. If the 4D theory also
has Abelian vector fields A,,, they similarly reduce to
3D as
WArG A, dx" = U(dt + Bydz") + A;dx". (2)

The timelike reduced 3D theory will have a G/H*
coset space structure similar to the G/H coset space
structure of a 3D theory reduced with a spacelike
Killing vector. Thus, for the spacelike reduction of
maximal supergravity down to 3D, one obtains an
Eg/SO(16) theory from the sequence of dimensional
reductions descending from D = 11 [4]. The resulting
3D theory has this exceptional symmetry because 3D
Abelian vector fields can be dualized to scalars; this
also happens for the analogous theory subjected to
a timelike reduction to 3D. The resulting 3D theory
contains 3D gravity coupled to a G/H* nonlinear sigma
model.

Although the numerator group G for a timelike
reduction is the same as that obtained in a spacelike
reduction, the divisor group H* for a timelike reduction
is a noncompact form of the spacelike divisor group
H [2]. A consequence of this H — H* change and the
dualization of vectors is the appearance of negative-sign
kinetic terms for some 3D scalars.

L An expanded version of this note will appear in the Festschrift in honor of the 75" birthday of Professor Andrei Alekseevich

Slavnov.
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Consequently, maximal supergravity, after a
timelike reduction to 3D and the subsequent
dualization of 29 vectors to scalars, has a bosonic
sector containing 3D gravity coupled to a Eg/SO*(16)
nonlinear sigma model with 128 scalar fields. As a
consequence of the timelike dimensional reduction and
vector dualizations, however, the scalars do not all have
the same signs for their “kinetic” terms:

e There are 72 positive-sign scalars: 70 descending
directly from the 4D theory, one emerging from the 4D
metric and one more coming from the D =4 - D =3
Kaluza-Klein vector, subsequently dualized to a scalar.
e There are 56 negative-sign scalars: 28 descending
directly from the time components of the 28 4D
vectors, and another 28 emerging from the 3D vectors
obtained from spatial components of the 28 4D vectors,
becoming then negative-sign scalars after dualization.

The sigma-model structure of this timelike reduced
maximal theory is Eg/SO*(16). The SO*(16) divisor
group is not an SO(p, ¢) group defined via preservation
of an indefinite metric. Instead it is constructed
starting from the SO(16) Clifford algebra {I'/,T'/} =
26’7 and then by forming the complex U(8)-
covariant oscillators a; := %(inq +ily;) and o' =
(a;)T = &(Ty;—1 — il's;). These satisfy the standard
fermi oscillator annihilation /creation anticommutation
relations

{aivaj} = {ai’aj} =0, (3)

The 120 SO*(16) generators are then formed from
the 64 hermitian U(8) generators a;’ plus the 2 x
28 = 56 antihermitian combinations of a;; +a. Under
SO*(16), the vector representation and the antichiral
spinor are pseudo-real, while the 128-dimensional chiral
spinor representation is real. This is the representation
under which the 72456 scalar fields transform in the
Eg/SO*(16) sigma model.

The 3D classification of extended supergravity
stationary solutions wvia timelike reduction generalizes
the 3D supergravity systems obtained from spacelike
reduction [5]. This also connects with N = 2 models
with coupled vectors [6] and N = 4 models with
vectors, where solutions have also been generated using
duality symmetries |7, 8].

The process of timelike dimensional reduction down
to 3 dimensions together with dualization of all
form-fields to scalars produces an Euclidean gravity
theory coupled to a G/H* nonlinear sigma model,
I, = [d*zA(R(Y) — $Gap(9)0i¢"0;65+"7), where
Gap(¢) is the G/H* sigma-model target-space metric
and ;5 is the 3D metric. Varying this action produces
the 3D field equations

{ai, aj} = 57,]

%vimWGAB(@amB) ~0

Rij(7) = G ap($)0:0"0;0"

(4)
()

where V; is a doubly covariant derivative (for the 3D
space M3 and for the G/H* target space).

Now one can make the simplifying assumption that
¢4 (x) = ¢*(o(x)), with a single intermediate map
o(x). Subject to this assumption, the field equations
become

d(bA B 82¢A d(bB d¢C

2 59,00 r4 A

Vo o +770;00;0] 702 +T50(G) o dcr] 0,

do? doP
P S | HAH. B

Ry = (36an(0) -2 ) 0,600 ©

Now one uses the gravitational Bianchi

identity V'(R;; 17;R) = 0 to obtain
A B .

%%(GAB(Qﬁ)%%)(VaniO’) = 0. Requiring

separation of the o(z) properties from the -

properties leads to the conditions

Vie = 0 (7)
d2¢A s dd)B d¢C _
g0z T FBC(G)%W =0 (8)
d A doP
o (GAB(¢)dUdU> 0 9)

The first equation (7) above implies that o(x) is
a harmonic map from the 3D space M3 into a curve
(o) in the G/H* target space. The second equation
(8) implies that ¢ (o) is a geodesic in G/H*. The third
equation (9) implies that o is an affine parameter. The
decomposition of ¢ : M3 — G/H* into a harmonic
map o : Mz — R and a geodesic ¢ : R — G/H* is in
accordance with a general theorem on harmonic maps
[9] according to which the composition of a harmonic
map with a totally geodesic one is again harmonic.
Such factorization into geodesic and harmonic maps
is also characteristic of general higher-dimensional p-
brane supergravity solutions [1,3].

Here is a sketch of the map composition:

D=3 Space M,

Now define the Komar two-form K = J,k,dz" A
dz¥. This is invariant under the action of the
timelike isometry and, by the asymptotic hypersurface
orthogonality assumption, is asymptotically horizontal.
This condition is equivalent to the requirement that the
scalar field B dual to the Kaluza-Klein vector arising
out of the 4D metric must vanish like O(r=!) as r — oc.
In this case, one can define the Komar mass and NUT
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charge by (where s* indicates a pull-back to a section)
[10]

1
n=—K
8

1
m=—K

s*x K,
8w

OMs3

s*K. (10)

OMs
The Maxwell field also defines charges. Using the
Maxwell field equation d x F = 0, where F = 0L/0F
is a linear combination of the two-form field strengths
F depending on the 4D scalar fields, and using the
Bianchi identity dF’ = 0, one obtains conserved electric

and magnetic charges:
/ s*F .
OMs

1 1
qz—K/ s** F, p=—K
2T OMs 2T
(11)

Now consider these charges from the three-
dimensional point of view in order to clarify their
transformation properties under the 3D duality group
G. The three-dimensional theory is described in terms
of a coset representative V € G/H*. The Maurer-
Cartan form V~1dV for g decomposes as

A Q+P , Q=Q.dz"eb”,
P P,dz" € gob* .

(12)

Then the three-dimensional scalar-field equation of
motion can be rewritten as d x VPY™! 0, so
the g-valued “Noether current” is x)VPV~!. Since the
three-dimensional theory is Euclidean, one cannot
properly speak of a conserved charge. Nevertheless,
since x)PV~! is d-closed, the integral of this 2-form
over a given homology cycle does not depend on the
particular representative of that cycle.

As a result, for stationary solutions, the integral
of this three-dimensional 2-form current, taken over
any spacelike closed surface OMj3 containing in its
interior all the singularities and topologically non-
trivial subspaces of a solution, defines a g © h*-valued
Noether-charge matrix ¢

*VPY~1 (13)

- 47T OMs
This transforms in the adjoint representation of the
duality group G in accordance with the standard non-
linear action of G on V € G/H*. For asymptotically-
flat solutions, V can be arranged to tend asymptotically
at infinity to the identity matrix; the charge matrix &
in that case is simply given by the asymptotic value of
the one-form P:

dr 9
P:%T—Q—FO(T ). (14)

Now follow the evolution of the duality group G
down a couple of steps in dimensional reduction. In
D 5, maximal supergravity has the maximally

noncompact duality group Egg, with the 42 D =
5 scalar fields taking their values in the coset
space Eg 6/USp(8), while the 1-form (i.e. vector) fields
transform in the 27 of Eg 6.

Proceeding on down to 4D, the 27 D = 5 vectors
produce new scalars upon dimensional reduction, and
one also gets a new Kaluza-Klein scalar emerging from
the D = 5 metric, making up the total of 70 scalars in
the 4D theory. These take their values in E; 7/SU(8),
while the 4D vector field strengths transform in the 56
of E7 7. The new KK scalar corresponds to a gl; grading
generator of E; 7, leading to a tri-graded decomposition
of the E7 7 algebra as follows:
err =~ 277 @ (g,  e6,0) @ 027, (15)
where the superscripts indicate the gl; grading.

Continuing on down to 3D wvia a timelike reduction,
one encounters a new phenomenon: 3D vectors can
now be dualized to scalars. This is already clear in
the timelike reduction of pure 4D GR to 3D, where
one obtains a two-scalar system taking values in
SL(2,R)/SO(2), where SL(2,R) is the Ehlers group
[11]. Its generators can be written

Yh ®ee®of = (7 _67) (16)

¥

and its Lie algebra is

[h, f]=-2f, [e, f]=h.

Accordingly, in reducing from 4D to 3D a
supergravity theory with 4D symmetry group Gy,
with corresponding Lie algebra g, and with vectors
transforming in the [4 representation of g,, one obtains
a penta-graded structure for the 3D Lie algebra g, with
the Ehlers h now acting as the grading generator 1():

h.e] = 2e,

1))

1~1s V10w s (M e1®. 17

For example, in 3D maximal supergravity one obtains
in this way eg s:

ess~ 12 356V @ (1@ er)® @560 @1
(248 generators). (18)
Now apply this to the decomposition of the coset-
space structure for the 3D scalar fields and the charge
matrix %. In 4D, the scalars are associated to the coset
generators g4 © h4, where by is the Lie algebra of the
4D divisor group Hy. The representation carried by
the 4D electric and magnetic charges ¢ and p is [y.
Then the 3D scalars and the charge matrix € can be
decomposed into three irreducible representations with
respect to s0(2) @ b4 according to

goh* = (sl(2,R)©s0(2) ® 4 ® (Kgs ©ha).  (19)
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The metric induced by the g algebra’s Cartan-Killing
metric on this coset space is positive definite for the
first and last terms, but is negative definite for [4. One
associates the s[(2,R) © s0(2) components with the
Komar mass and the Komar NUT charge, while the
[4 components are associated with the electromagnetic
charges. The remaining g4 © b4 charges belong to the
Noether current of the 4D theory.

Breitenlohner, Gibbons and Maison [2] proved that
if G is simple, all the non-extremal single-black-hole
solutions of a given theory lie on the H* orbit of a
Kerr solution. Moreover, all static solutions regular
outside the horizon with a charge matrix satisfying
Tr €2 > 0 lie on the H*-orbit of a Schwarzschild
solution. (Turning on and off angular momentum
requires consideration of the D = 2 duality group
generalizing the Geroch A;! group.)

Using Weyl coordinates, where the 4D metric takes
the form

ds* = f(a,p) " [*k(z, p)(da® + dp?)
+ p%d¢*] + f(z,p)(dt + Az, p)de)* (20)
the coset representative )V associated to the

Schwarzschild solution with mass m can be written
in terms of the non-compact generator h of the Ehlers
5[(2,R) only, i.e.

V = exp (1lnrm (21)

h> — € = mh.
2 r+m

For the maximal N = 8 theory with symmetry
Eg(s) (and also for the exceptional ‘magic’ N = 2
supergravity [12] with symmetry Eg_s4)), one has
h = diag[2,1,0,—1,—2], so
h® = 5h® — 4h (22)
Consequently, the charge matrix ¢ satisfies in all cases
the characteristic equation

€ = 526> — 4c'€, (23)
where ¢ = Trlhz Tr €2 is the extremality parameter
(> = 0 for extremal static solutions; ¢ = m?

for Schwarzschild). Moreover, for all but the two
exceptional Eg cases, a stronger constraint is actually
satisfied by the charge matrix %

€3 = 6. (24)
The characteristic equation selects acceptable orbits
of solutions, i.e.orbits not exclusively containing
solutions with naked singularities. It determines &
in terms of the mass and NUT charge and the 4D
electromagnetic charges.

The parameter c? is
(target space velocity)®  of

same as the
harmonic-map

the
the

discussion: ¢ = v2. The Maxwell-Einstein theory

is the simplest example with an indefinite-signature
sigma-model metric, for the scalar-field target space
G/H* = SU(2,1)/S(U(1,1) x U(1)). The Maxwell-
Einstein charge matrix is

m n fz/ﬂ
CuE = n -m  iz/V2 | €su(2,2) ©u(l,1)
zZ/\V2 iz/V2 0
(25)
where z = ¢ + ip is the complex electromagnetic

charge. The Maxwell-Einstein extremality parameter
is ¢ = m? + n? — 2z. Solutions fall into three
categories: ¢ > 0 nonextremal, ¢ = 0 extremal and
¢ < 0 hyperextremal. The hyperextremal solutions
have naked singularities, while the nonextremal and
extremal solutions have their singularities cloaked by
horizons.

Extremal solutions have ¢ = 0, implying that the
charge matrix € becomes nilpotent: €° = 0 in the Eg
cases and € = 0 otherwise.

For N extended supergravity theories, one finds
H* = Spin*(2N) x Hy and the charge matrix ¢
transforms as a Weyl spinor of Spin*(2A/) also valued
in a representation of hy (where by acts on the matter
content of reducible N = 4 theories). As in the SO*(16)
case considered earlier, one defines the Spin*(2N)
fermionic oscillators

1
a = 5 (in—1 + irm)y
i — i1 :
a = (al) = 5 (FQi—l — 1F2i> (26)
for 4,5,--- = 1,...,N. These obey standard fermionic

annihilation & creation anticommutation relations.
Using this annihilation/creation oscillator basis, the
charge matrix € can be represented as a state (where
a; [0) = 0)

|(g> = (KW + Zijaiaj
+ Eijklaiajakal + - ) K|0). (27)
From the requirement that the dilatino fields be left
invariant under the unbroken supersymmetry of a BPS
solution, one derives a ‘Dirac equation’ for the charge
state vector,

(eéai + Qagefai) |€) =0 (28)

where (€}, €®) is the asymptotic (for r — oo) value of
the Killing spinor and Q3 is a symplectic form on cn
in cases with n/N preserved supersymmetry.

Note that ¢*> = 0 < (€|¢) = 0 is a weaker
condition than the supersymmetry Dirac equation.
Extremal and BPS are not always synonymous
conditions, although they coincide for A/ < 5 pure
supergravities. They are not synonymous for A" = 6 & 8

or for theories with vector matter coupling.
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Earlier analysis of the orbits of the 4D symmetry
groups G4 [13] heavily used the Iwasawa decomposition

g = U(g,z) €Xp (ln Ag,2) z) big,z) (29)

with w7 € Hy and by z € Bz, where
B, C G4 is the parabolic subgroup that leaves
the charges Z invariant up to a multiplicative factor
A(g,z)- This multiplicative factor can be compensated
for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate
transformations, leading to a formulation of active
symmetry transformations that map solutions into
other solutions with unchanged asymptotic values of
the spacetime metric and scalar fields.

The 4D ‘trombone’ transformation finds a natural
home in the parabolic subgroup of the 3D duality
group G. The 3D structure is characterized by the
fact that the Iwasawa decomposition breaks down for
noncompact divisor groups H*.

The Iwasawa decomposition does, however work
“almost everywhere” in the 3D solution space. The
places where it fails are precisely the extremal
suborbits of the duality group. This has the
consequence that G does not act transitively on its own
orbits. There are G transformations which allow one to
send ¢ — 0, thus landing on an extremal (generally
BPS) suborbit. However, one cannot then invert the
map and return to a generic non-extremal solution from
the extremal solution reached on a given G trajectory.

The above framework applies equally to multi-
centered as to single-centered solutions [14, 15]. One
may start from a general ansatz

V(x) = Vo exp(— > H"(x)%p) (30)

with Lie algebra elements %,, € g © h* and functions
H"(z) to be determined by the equations of motion.

Defining as above V™1dV = Q + P and restricting P
to depend linearly on the functions "™ (z), one finds
the requirement [K %), ¢y, 6,]] = 0. The Einstein and
scalar equations of motion then reduce to

1
Ry — iguuR = Z O H™OH" Tr €6, (31)

dxdH" = 0. (32)

Restricting attention to solutions where the 3-space is
flat then requires Tr %,,%,, = 0. The resulting system
generalizes that found in [3]. Solving (K€, (€0, 6] =
0 = Tr %,,%, is now reduced to an algebraic problem
amenable to the above nilpotent-orbit analysis: non-
extremal and extremal stationary solutions can be
formed from extremal single-hole constituents.

In summary, what has been developed here
is a quite general framework for the analysis of
stationary supergravity solutions using duality orbits.
The Noether charge matrix ¢ satisfies a characteristic
equation €° = 5¢2%3 — 4¢*€ in the maximal Eg cases
and €2 = c?% in the non-maximal cases, where ¢? =
ﬁTr €? is the extremality parameter. Extremal

solutions are characterized by ¢ = 0, and € becomes
nilpotent (4° = 0 or ¥3 = 0) on the corresponding
extremal suborbits. BPS solutions have a charge
matrix ¢ satisfying an algebraic ‘supersymmetry Dirac
equation’ which encodes the general properties of
such solutions. This is a stronger condition than the
¢ = 0 extremality condition. The orbits of the 3D
duality group G are not always acted upon transitively
by G. This is related to the failure of the Iwasawa
decomposition for noncompact divisor groups H*.
The Iwasawa failure set corresponds to the extremal
suborbits.
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K. C. Cmeane

OPBUTHI YEPHBIX JBIP B CYITEPTPABUTAIIN

JlyanabHble CHMMETPHE HCIOIL3YIOTCS [JjIsl IOCTPOEHUS CHMMETPHYUHBIX OPOUT B PEIICHUAX [JIsi YePHBIX ABID B Cyleprpa-
BUTAIMH U 71l BBISABJIEHUS MX CBg3W C BHEIIHUME pemeHusaMu (r.e. BPS) B mpenese Takux opbur. Mcnosb3yemslii mis
JTAHHOTO aHAJIN3a MOAXOJ CBOIUT 33434y CTAIMOHAPHON YepHO#M ABIPHI K 3a7ade HenuHeiHON curma-momenu. CeMeicTBO
BPS pemenuii xapakTepu3yeTcsi HUJIBIOTEHTHBIMUA OPOUTAMY AYaJbHOM CUMMETPUU.
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