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BLACK HOLE ORBITS IN SUPERGRAVITY1
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Duality symmetries are used to organise symmetry orbits of supergravity black-hole solutions and to display their relation
to extremal (i.e.BPS) solutions at the limits of such orbits. An important technique for this analysis uses a timelike
dimensional reduction and exchanges the stationary black-hole problem for a nonlinear sigma-model problem. Families of
BPS solutions are characterized by nilpotent orbits under the duality symmetries, based upon a tri-graded or penta-graded
decomposition of the corresponding duality group algebra.
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The study of families of black-hole solutions is
of considerable current interest because it touches
upon many important issues in theoretical physics.
For example, the classi�cation of BPS and non-BPS
black holes forms part of a more general study of
branes in supergravity and superstring theory. Branes
and their intersections, as well as their worldvolume
modes and attached string modes, are also key elements
in phenomenological approaches to the marriage of
string theory with particle physics phenomenology.
The related study of nonsingular and horizon-free BPS
gravitational solitons is also central to the �fuzzball�
proposal of BPS solutions as candidate black-hole
quantum microstates. Brane solutions are also the basis
for a number of early-universe cosmology candidates.

The search for supergravity solutions with assumed
Killing symmetries can be recast as a Kaluza-Klein
problem [1�3]. To see this, consider a 4D theory with
a nonlinear bosonic symmetry G4 (e.g. the �duality�
symmetry E7 for maximal N = 8 supergravity). Scalar
�elds take their values in a target space Φ4 = G4/H4,
where H4 is the corresponding linearly realized
subgroup, generally the maximal compact subgroup
of G4 (e.g. SU(8) ⊂ E7 for N = 8 SG). The search will
be constrained by the following considerations:
• We assume that a solution spacetime is
asymptotically �at or asymptotically Taub-NUT and
that there is a `radial' function r which is divergent in
the asymptotic region, gµν∂µr∂νr ∼ 1 +O(r−1).
• Searching for stationary solutions amounts to
assuming that a solution possesses a timelike Killing
vector �eld κµ(x). Lie derivatives with respect to κµ are
assumed to vanish on all �elds. The Killing vector κµ
will be assumed to haveW := −gµνκµκν ∼ 1+O(r−1).
• We also assume asymptotic hypersurface
orthogonality, i.e.κν(∂µκν − ∂νκµ) ∼ O(r−2). In

any vielbein frame, the curvature will then fall o�
as Rabcd ∼ O(r−3).

The 3D theory obtained after dimensional
reduction with respect to a timelike Killing vector
κµ will have an Abelian principal bundle structure,
with a metric

ds2 = −W (dt+Bidx
i)2 +W−1γijdx

idxj , (1)

where t is a coordinate adapted to the timelike Killing
vector κµ and γij is the metric on the 3-dimensional
hypersurface M3 at constant t. If the 4D theory also
has Abelian vector �elds Aµ, they similarly reduce to
3D as

4
√

4πGAµdxµ = U(dt+Bidx
i) +Aidx

i. (2)

The timelike reduced 3D theory will have a G/H∗

coset space structure similar to the G/H coset space
structure of a 3D theory reduced with a spacelike
Killing vector. Thus, for the spacelike reduction of
maximal supergravity down to 3D, one obtains an
E8/SO(16) theory from the sequence of dimensional
reductions descending from D = 11 [4]. The resulting
3D theory has this exceptional symmetry because 3D
Abelian vector �elds can be dualized to scalars; this
also happens for the analogous theory subjected to
a timelike reduction to 3D. The resulting 3D theory
contains 3D gravity coupled to aG/H∗ nonlinear sigma
model.

Although the numerator group G for a timelike
reduction is the same as that obtained in a spacelike
reduction, the divisor groupH∗ for a timelike reduction
is a noncompact form of the spacelike divisor group
H [2]. A consequence of this H → H∗ change and the
dualization of vectors is the appearance of negative-sign
kinetic terms for some 3D scalars.

1An expanded version of this note will appear in the Festschrift in honor of the 75th birthday of Professor Andrei Alekseevich
Slavnov.
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Consequently, maximal supergravity, after a
timelike reduction to 3D and the subsequent
dualization of 29 vectors to scalars, has a bosonic
sector containing 3D gravity coupled to a E8/SO

∗(16)
nonlinear sigma model with 128 scalar �elds. As a
consequence of the timelike dimensional reduction and
vector dualizations, however, the scalars do not all have
the same signs for their �kinetic� terms:
• There are 72 positive-sign scalars: 70 descending
directly from the 4D theory, one emerging from the 4D
metric and one more coming from the D = 4→ D = 3
Kaluza-Klein vector, subsequently dualized to a scalar.
• There are 56 negative-sign scalars: 28 descending
directly from the time components of the 28 4D
vectors, and another 28 emerging from the 3D vectors
obtained from spatial components of the 28 4D vectors,
becoming then negative-sign scalars after dualization.

The sigma-model structure of this timelike reduced
maximal theory is E8/SO

∗(16). The SO∗(16) divisor
group is not an SO(p, q) group de�ned via preservation
of an inde�nite metric. Instead it is constructed
starting from the SO(16) Cli�ord algebra {ΓI ,ΓJ} =
2δIJ and then by forming the complex U(8)-
covariant oscillators ai := 1

2 (Γ2i−1 + iΓ2i) and ai ≡
(ai)

† = 1
2 (Γ2i−1 − iΓ2i). These satisfy the standard

fermi oscillator annihilation/creation anticommutation
relations

{ai, aj} = {ai, aj} = 0 , {ai, aj} = δi
j . (3)

The 120 SO∗(16) generators are then formed from
the 64 hermitian U(8) generators ai

j plus the 2 ×
28 = 56 antihermitian combinations of aij±aij . Under
SO∗(16), the vector representation and the antichiral
spinor are pseudo-real, while the 128-dimensional chiral
spinor representation is real. This is the representation
under which the 72+56 scalar �elds transform in the
E8/SO

∗(16) sigma model.
The 3D classi�cation of extended supergravity

stationary solutions via timelike reduction generalizes
the 3D supergravity systems obtained from spacelike
reduction [5]. This also connects with N = 2 models
with coupled vectors [6] and N = 4 models with
vectors, where solutions have also been generated using
duality symmetries [7, 8].

The process of timelike dimensional reduction down
to 3 dimensions together with dualization of all
form-�elds to scalars produces an Euclidean gravity
theory coupled to a G/H∗ nonlinear sigma model,
Iσ =

∫
d3x
√
γ(R(γ) − 1

2GAB(φ)∂iφ
A∂jφ

Bγij), where
GAB(φ) is the G/H∗ sigma-model target-space metric
and γij is the 3D metric. Varying this action produces
the 3D �eld equations

1
√
γ
∇i(
√
γγijGAB(φ)∂jφ

B) = 0 (4)

Rij(γ) = 1
2GAB(φ)∂iφ

A∂jφ
B (5)

where ∇i is a doubly covariant derivative (for the 3D
spaceM3 and for the G/H∗ target space).

Now one can make the simplifying assumption that
φA(x) = φA(σ(x)), with a single intermediate map
σ(x). Subject to this assumption, the �eld equations
become

∇2σ
dφA

dσ
+ γij∂iσ∂jσ[

∂2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ
] = 0,

Rij =

(
1
2GAB(φ)

dφA

dσ

dφB

dσ

)
∂iφ

A∂jφ
B . (6)

Now one uses the gravitational Bianchi
identity ∇i(Rij − 1

2γijR) ≡ 0 to obtain
1
4
d
dσ (GAB(φ)dφ

A

dσ
dφB

dσ )(∇iσ∂iσ) = 0. Requiring

separation of the σ(x) properties from the d
dσ

properties leads to the conditions

∇2σ = 0 (7)

d2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ
= 0 (8)

d

dσ

(
GAB(φ)

dφA

dσ

dφB

dσ

)
= 0 (9)

The �rst equation (7) above implies that σ(x) is
a harmonic map from the 3D space M3 into a curve
φA(σ) in the G/H∗ target space. The second equation
(8) implies that φA(σ) is a geodesic in G/H∗. The third
equation (9) implies that σ is an a�ne parameter. The
decomposition of φ : M3 → G/H∗ into a harmonic
map σ : M3 → R and a geodesic φ : R → G/H∗ is in
accordance with a general theorem on harmonic maps
[9] according to which the composition of a harmonic
map with a totally geodesic one is again harmonic.
Such factorization into geodesic and harmonic maps
is also characteristic of general higher-dimensional p-
brane supergravity solutions [1, 3].

Here is a sketch of the map composition:

xi

σ(x)

∇ σ = 02

GH*/

D=3 Space M
3

φ  (σ
)

ge
od

esi
cΑ

Now de�ne the Komar two-form K ≡ ∂µκνdx
µ ∧

dxν . This is invariant under the action of the
timelike isometry and, by the asymptotic hypersurface
orthogonality assumption, is asymptotically horizontal.
This condition is equivalent to the requirement that the
scalar �eld B dual to the Kaluza-Klein vector arising
out of the 4D metric must vanish likeO(r−1) as r →∞.
In this case, one can de�ne the Komar mass and NUT
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charge by (where s∗ indicates a pull-back to a section)
[10]

m ≡ 1

8π
K

∫
∂M3

s∗?K, n ≡ 1

8π
K

∫
∂M3

s∗K. (10)

The Maxwell �eld also de�nes charges. Using the
Maxwell �eld equation d ? F = 0, where F ≡ δL/δF
is a linear combination of the two-form �eld strengths
F depending on the 4D scalar �elds, and using the
Bianchi identity dF = 0, one obtains conserved electric
and magnetic charges:

q ≡ 1

2π
K

∫
∂M3

s∗ ? F , p ≡ 1

2π
K

∫
∂M3

s∗F .

(11)

Now consider these charges from the three-
dimensional point of view in order to clarify their
transformation properties under the 3D duality group
G. The three-dimensional theory is described in terms
of a coset representative V ∈ G/H∗. The Maurer-
Cartan form V−1dV for g decomposes as

V−1dV = Q+ P , Q ≡ Qµdxµ ∈ h∗ ,

P ≡ Pµdx
µ ∈ g	 h∗ . (12)

Then the three-dimensional scalar-�eld equation of
motion can be rewritten as d ? VPV−1 = 0, so
the g-valued �Noether current� is ?VPV−1. Since the
three-dimensional theory is Euclidean, one cannot
properly speak of a conserved charge. Nevertheless,
since ?VPV−1 is d-closed, the integral of this 2-form
over a given homology cycle does not depend on the
particular representative of that cycle.

As a result, for stationary solutions, the integral
of this three-dimensional 2-form current, taken over
any spacelike closed surface ∂M3 containing in its
interior all the singularities and topologically non-
trivial subspaces of a solution, de�nes a g 	 h∗-valued
Noether-charge matrix C :

C ≡ 1

4π

∫
∂M3

?VPV−1. (13)

This transforms in the adjoint representation of the
duality group G in accordance with the standard non-
linear action of G on V ∈ G/H∗. For asymptotically-
�at solutions, V can be arranged to tend asymptotically
at in�nity to the identity matrix; the charge matrix C
in that case is simply given by the asymptotic value of
the one-form P :

P = C
dr

r2
+O(r−2) . (14)

Now follow the evolution of the duality group G
down a couple of steps in dimensional reduction. In
D = 5, maximal supergravity has the maximally

noncompact duality group E6,6, with the 42 D =
5 scalar �elds taking their values in the coset
space E6,6/USp(8), while the 1-form (i.e. vector) �elds
transform in the 27 of E6,6.

Proceeding on down to 4D, the 27 D = 5 vectors
produce new scalars upon dimensional reduction, and
one also gets a new Kaluza-Klein scalar emerging from
the D = 5 metric, making up the total of 70 scalars in
the 4D theory. These take their values in E7,7/SU(8),
while the 4D vector �eld strengths transform in the 56
of E7,7. The new KK scalar corresponds to a gl1 grading
generator of E7,7, leading to a tri-graded decomposition
of the E7,7 algebra as follows:

e7,7 ' 27
(−2) ⊕ (gl1 ⊕ e6,6)(0) ⊕ 27(2), (15)

where the superscripts indicate the gl1 grading.
Continuing on down to 3D via a timelike reduction,

one encounters a new phenomenon: 3D vectors can
now be dualized to scalars. This is already clear in
the timelike reduction of pure 4D GR to 3D, where
one obtains a two-scalar system taking values in
SL(2,R)/SO(2), where SL(2,R) is the Ehlers group
[11]. Its generators can be written

γh⊕ εe⊕ ϕf =

(
γ ε
ϕ −γ

)
(16)

and its Lie algebra is

[h, e] = 2e , [h,f ] = −2f , [e,f ] = h.

Accordingly, in reducing from 4D to 3D a
supergravity theory with 4D symmetry group G4,
with corresponding Lie algebra g4 and with vectors
transforming in the l4 representation of g4, one obtains
a penta-graded structure for the 3D Lie algebra g, with
the Ehlers h now acting as the grading generator 1(0):

g ' 1(−2) ⊕ l4
(−1) ⊕ (1⊕ g4)(0) ⊕ l

(+1)
4 ⊕ 1(2). (17)

For example, in 3D maximal supergravity one obtains
in this way e8,8:

e8,8 ' 1(−2) ⊕ 56
(−1) ⊕ (1⊕ e7,7)(0) ⊕ 56(+1) ⊕ 1(2)

(248 generators). (18)

Now apply this to the decomposition of the coset-
space structure for the 3D scalar �elds and the charge
matrix C . In 4D, the scalars are associated to the coset
generators g4 	 h4, where h4 is the Lie algebra of the
4D divisor group H4. The representation carried by
the 4D electric and magnetic charges q and p is l4.
Then the 3D scalars and the charge matrix C can be
decomposed into three irreducible representations with
respect to so(2)⊕ h4 according to

g	 h∗ ∼=
(
sl(2,R)	 so(2)

)
⊕ l4 ⊕

(
Kg4 	 h4

)
. (19)
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The metric induced by the g algebra's Cartan-Killing
metric on this coset space is positive de�nite for the
�rst and last terms, but is negative de�nite for l4. One
associates the sl(2,R) 	 so(2) components with the
Komar mass and the Komar NUT charge, while the
l4 components are associated with the electromagnetic
charges. The remaining g4 	 h4 charges belong to the
Noether current of the 4D theory.

Breitenlohner, Gibbons and Maison [2] proved that
if G is simple, all the non-extremal single-black-hole
solutions of a given theory lie on the H∗ orbit of a
Kerr solution. Moreover, all static solutions regular
outside the horizon with a charge matrix satisfying
Tr C 2 > 0 lie on the H∗-orbit of a Schwarzschild
solution. (Turning on and o� angular momentum
requires consideration of the D = 2 duality group
generalizing the Geroch A1

1 group.)
Using Weyl coordinates, where the 4D metric takes

the form

ds2 = f(x, ρ)−1[e2k(x, ρ)(dx2 + dρ2)

+ ρ2dφ2] + f(x, ρ)(dt+A(x, ρ)dφ)2 , (20)

the coset representative V associated to the
Schwarzschild solution with mass m can be written
in terms of the non-compact generator h of the Ehlers
sl(2,R) only, i.e.

V = exp

(
1

2
ln
r −m
r +m

h

)
→ C = mh. (21)

For the maximal N = 8 theory with symmetry
E8(8) (and also for the exceptional `magic' N = 2
supergravity [12] with symmetry E8(−24)), one has
h = diag[2, 1, 0,−1,−2], so

h5 = 5h3 − 4h (22)

Consequently, the charge matrix C satis�es in all cases
the characteristic equation

C 5 = 5c2C 3 − 4c4C , (23)

where c2 ≡ 1
Tr h2 Tr C 2 is the extremality parameter

(c2 = 0 for extremal static solutions; c2 = m2

for Schwarzschild). Moreover, for all but the two
exceptional E8 cases, a stronger constraint is actually
satis�ed by the charge matrix C :

C 3 = c2C . (24)

The characteristic equation selects acceptable orbits
of solutions, i.e. orbits not exclusively containing
solutions with naked singularities. It determines C
in terms of the mass and NUT charge and the 4D
electromagnetic charges.

The parameter c2 is the same as the
(target space velocity)

2
of the harmonic-map

discussion: c2 = v2. The Maxwell-Einstein theory
is the simplest example with an inde�nite-signature
sigma-model metric, for the scalar-�eld target space
G/H∗ = SU(2, 1)/S(U(1, 1) × U(1)). The Maxwell-
Einstein charge matrix is

CME =

 m n −z/
√

2

n −m iz/
√

2

z̄/
√

2 iz̄/
√

2 0

 ∈ su(2, 2)	 u(1, 1)

(25)

where z = q + ip is the complex electromagnetic
charge. The Maxwell-Einstein extremality parameter
is c2 = m2 + n2 − zz̄. Solutions fall into three
categories: c2 > 0 nonextremal, c2 = 0 extremal and
c2 < 0 hyperextremal. The hyperextremal solutions
have naked singularities, while the nonextremal and
extremal solutions have their singularities cloaked by
horizons.

Extremal solutions have c2 = 0, implying that the
charge matrix C becomes nilpotent: C 5 = 0 in the E8

cases and C 3 = 0 otherwise.
For N extended supergravity theories, one �nds

H∗ ∼= Spin∗(2N ) × H0 and the charge matrix C
transforms as a Weyl spinor of Spin∗(2N ) also valued
in a representation of h0 (where h0 acts on the matter
content of reducible N = 4 theories). As in the SO∗(16)
case considered earlier, one de�nes the Spin∗(2N )
fermionic oscillators

ai :=
1

2

(
Γ2i−1 + iΓ2i

)
,

ai ≡ (ai)
† =

1

2

(
Γ2i−1 − iΓ2i

)
(26)

for i, j, · · · = 1, . . . ,N . These obey standard fermionic
annihilation & creation anticommutation relations.
Using this annihilation/creation oscillator basis, the
charge matrix C can be represented as a state (where
ai |0〉 = 0)

|C 〉 ≡
(
KW + Zija

iaj

+ Σijkla
iajakal + · · ·

)
K |0〉 . (27)

From the requirement that the dilatino �elds be left
invariant under the unbroken supersymmetry of a BPS
solution, one derives a `Dirac equation' for the charge
state vector,(
εiαai + Ωαβε

β
i a

i
)
|C 〉 = 0 (28)

where (εiα, ε
α
i ) is the asymptotic (for r → ∞) value of

the Killing spinor and Ωαβ is a symplectic form on C2n

in cases with n/N preserved supersymmetry.
Note that c2 = 0 ⇐⇒ 〈C |C 〉 = 0 is a weaker

condition than the supersymmetry Dirac equation.
Extremal and BPS are not always synonymous
conditions, although they coincide for N ≤ 5 pure
supergravities. They are not synonymous forN = 6 & 8
or for theories with vector matter coupling.
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Earlier analysis of the orbits of the 4D symmetry
groups G4 [13] heavily used the Iwasawa decomposition

g = u(g,Z) exp
(

lnλ(g,Z) z
)
b(g,Z) (29)

with u(g,Z) ∈ H4 and b(g,Z) ∈ BZ , where
BZ ⊂ G4 is the parabolic subgroup that leaves
the charges Z invariant up to a multiplicative factor
λ(g,Z). This multiplicative factor can be compensated
for by `trombone' transformations combining Weyl
scalings with compensating dilational coordinate
transformations, leading to a formulation of active
symmetry transformations that map solutions into
other solutions with unchanged asymptotic values of
the spacetime metric and scalar �elds.

The 4D `trombone' transformation �nds a natural
home in the parabolic subgroup of the 3D duality
group G. The 3D structure is characterized by the
fact that the Iwasawa decomposition breaks down for
noncompact divisor groups H∗.

The Iwasawa decomposition does, however work
�almost everywhere� in the 3D solution space. The
places where it fails are precisely the extremal
suborbits of the duality group. This has the
consequence that G does not act transitively on its own
orbits. There are G transformations which allow one to
send c2 → 0, thus landing on an extremal (generally
BPS) suborbit. However, one cannot then invert the
map and return to a generic non-extremal solution from
the extremal solution reached on a given G trajectory.

The above framework applies equally to multi-
centered as to single-centered solutions [14, 15]. One
may start from a general ansatz

V(x) = V0 exp(−
∑
n

Hn(x)Cn) (30)

with Lie algebra elements Cn ∈ g 	 h∗ and functions
Hn(x) to be determined by the equations of motion.

De�ning as above V−1dV = Q + P and restricting P
to depend linearly on the functions Hn(x), one �nds
the requirement [KCm, [Cn,Cp]] = 0. The Einstein and
scalar equations of motion then reduce to

Rµν −
1

2
gµνR =

∑
mn

∂µHm∂νHn Tr CmCn, (31)

d ? dHn = 0. (32)

Restricting attention to solutions where the 3-space is
�at then requires Tr CmCn = 0. The resulting system
generalizes that found in [3]. Solving [KCm, [Cn,Cp]] =
0 = Tr CmCn is now reduced to an algebraic problem
amenable to the above nilpotent-orbit analysis: non-
extremal and extremal stationary solutions can be
formed from extremal single-hole constituents.

In summary, what has been developed here
is a quite general framework for the analysis of
stationary supergravity solutions using duality orbits.
The Noether charge matrix C satis�es a characteristic
equation C 5 = 5c2C 3 − 4c4C in the maximal E8 cases
and C 3 = c2C in the non-maximal cases, where c2 ≡

1
Tr h2 Tr C 2 is the extremality parameter. Extremal

solutions are characterized by c2 = 0, and C becomes
nilpotent (C 5 = 0 or C 3 = 0) on the corresponding
extremal suborbits. BPS solutions have a charge
matrix C satisfying an algebraic `supersymmetry Dirac
equation' which encodes the general properties of
such solutions. This is a stronger condition than the
c2 = 0 extremality condition. The orbits of the 3D
duality group G are not always acted upon transitively
by G. This is related to the failure of the Iwasawa
decomposition for noncompact divisor groups H∗.
The Iwasawa failure set corresponds to the extremal
suborbits.
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Ê. Ñ. Ñòåëëå

ÎÐÁÈÒÛ ×ÅÐÍÛÕ ÄÛÐ Â ÑÓÏÅÐÃÐÀÂÈÒÀÖÈÈ

Äóàëüíûå ñèììåòðèè èñïîëüçóþòñÿ äëÿ ïîñòðîåíèÿ ñèììåòðè÷íûõ îðáèò â ðåøåíèÿõ äëÿ ÷åðíûõ äûð â ñóïåðãðà-
âèòàöèè è äëÿ âûÿâëåíèÿ èõ ñâÿçè ñ âíåøíèìè ðåøåíèÿìè (ò.å. BPS) â ïðåäåëå òàêèõ îðáèò. Ècïîëüçóåìûé äëÿ
äàííîãî àíàëèçà ïîäõîä ñâîäèò çàäà÷ó ñòàöèîíàðíîé ÷åðíîé äûðû ê çàäà÷å íåëèíåéíîé ñèãìà-ìîäåëè. Ñåìåéñòâî
BPS ðåøåíèé õàðàêòåðèçóåòñÿ íèëüïîòåíòíûìè îðáèòàìè äóàëüíîé ñèììåòðèè.

Êëþ÷åâûå ñëîâà: ñóïåðãðàâèòàöèÿ, ÷åðíûå äûðû, ñèììåòðèè äóàëüíîñòè, ñèãìà-ìîäåëü.
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