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We consider the �eld of spin 3 on the de Sitter background in two dimensions and calculate the the divergent part of the
one-loop e�ective action in a nonminimal gauge. For this purpose we construct a simple formula for the b2 coe�cient of
an arbitrary second order di�erential operator with small nonminimal terms. Using this formula we �nd that the divergent
part of one-loop e�ective action for the considered theory is gauge independent.
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1 Introduction

Higher spins are described by the �elds φµ1µ2...µs

which are totally symmetric and satisfy the condition

φα
α
β
β
µ5...µs = 0. (1)

The action for these �elds on the �at background was
obtained in [1] for bosons and in [2] for fermions. It is
also possible to describe the higher spin �elds on the
(anti)-de Sitter background:

Rµναβ =
1

D(D − 1)
(gµαgνβ − gµβgνα)R, (2)

where R = const. Then the action for bosons has the
form:

S =
(−1)s

2

∫
dDx
√
−g
[
(∇αφµ1...µs)

2 − 1

2
s(s− 1)

×(∇αφββµ3...µs)
2 − s(∇αφαµ2...µs)

2 + s(s− 1)

×∇αφαβµ3...µs∇βφγγµ3...µs −
1

4
s(s− 1)(s− 2)

×(∇αφαββµ4...µs)
2

+c1R(φµ1...µs)
2 + c2R(φγγµ3...µs)

2
]
, (3)

where the coe�cients c1 and c2 are de�ned by the in-
variance of the action under the transformations

δφµ1...µs =
1

s
(∇µ1

αµ2...µs +∇µ2
αµ1µ3...µs + . . .). (4)

The parameter αµ1µ2...µs−1
is totally symmetric and

traceless αββµ3...µs−1 = 0.
In [3] it was shown that under certain assumptions

the consistent Lagrangian formulation for free bosonic
totally symmetric higher spin �elds is possible only in
constant curvature Riemann space.

In order to calculate quantum corrections for the
considered theory (as for all gauge theories), it is nec-
essary to �x a gauge. It is well-known that the e�ective

action is gauge independent on shell. However, explicit
calculations show that o� shell the e�ective action de-
pends on the gauge choice, see e.g. [4]. The choice of
the minimal gauge considerably simpli�es the calcula-
tions, especially on the curved background.

We will investigate the gauge dependence of the ef-
fective action for higher spin �elds on the (A)dS back-
ground. For this purpose it is convenient to choose the
λ, β gauge

Sgf =
(−1)s

2

∫
dDx
√
−g s(1 + λ)[∇αφαµ2...µs

−1

2
(s− 1)(1 + β)∇(µ2

φααµ3...µs)]
2. (5)

In this paper we calculate the divergent part of the
one-loop e�ective action in this gauge and show that
the result does not depend on the parameters λ and β.

2 Algorithm for calculating the one-loop di-
vergences

In the one-loop approximation the e�ective action
is given by

Γ[φ] = S[φ] +
i

2
~ Tr ln D̂ +O(~2), (6)

where Tr includes
∫
dDx and the di�erential operator

D̂ is de�ned by

D̂ =
δ2S

δϕiδϕj
. (7)

Gauge (5) is called nonminimal, because the corre-
sponding second variation of the classical action (with
the gauge �xing terms) is given by a nonminimal op-
erator

D̂ ∼ ∇2
µ +Kµν∇µ∇ν + Sµ∇µ +W (8)
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in which terms with the largest number of derivatives
di�er from the Laplace operator.

From the mathematical point of view, calculation of
the divergent part of the one-loop e�ective action cor-
responds to obtaining the Minakshisundaram-De Witt-
Seeley coe�cients [5]- [10]. For the second order oper-
ator D̂ these coe�cients are de�ned by

tr〈x| exp(isD̂)|x〉 =

√
−g

(4πis)D/2

(
b0 + b2(is)

+b4(is)2 +O(s3)
)
. (9)

Using the dimensional regularization one-loop diver-
gences can be related with certain Minakshisundaram-
DeWitt-Seeley coe�cients. Really, taking into account
that

ln D̂ = −i
∞∫

0

ds

s
exp(is(D̂ + i0)), (10)

it is easy to see, that, for example, for D ≈ 2 the diver-
gent part of the one-loop e�ective action can be written
as

Γ
(∞)
1−loop =

1

4π(D − 2)

∫
dDx
√
−g b2, (11)

Similar formulas can be also written for other
dimensions. For various di�erential operators
Minakshisundaram-De Witt-Seeley coe�cients can be
found using the Schwinger�De Witt technique and
its generalizations [11]- [14]. For a minimal opera-
tor heat kernel coe�cients on the (A)dS background
can be found using harmonic analysis on homogeneous
spaces [15]. Using this method the one-loop e�ective
potential for �elds of arbitrary spin on the (A)dS back-
ground in four dimensions was calculated in [16] in the
minimal gauge.

Here we use the generalization of the method pro-
posed by G.t'Hooft and M.Veltman [17]. Using this
technique b4 coe�cient (without terms which are in-
tegrals of total derivatives) has been calculated for
an arbitrary di�erential operator [18]. However, on
the (A)dS background this algorithm does not work,
because terms containing total derivatives are essen-
tial. In order to take into account terms with total
derivatives we consider the simplest case: b2 coe�cient,
which gives the divergences in two dimensions. More-
over, the nonminimal terms are considered to be small.
Namely, we consider the operator

D̂ = ∇2
µ + εKµν∇µ∇ν + Sµ∇µ +W, (12)

assuming ε→ 0.

The divergent diagrams are constructed using the

expansion

ln(D̂)

= ln(∂2
µ + εKµν

0 ∂µ∂ν) + ln
(

1 +
1

∂2
µ + εKµν

0 ∂µ∂ν
V̂
)

+
1

2

[
ln(∂2

µ + εKµν
0 ∂µ∂ν), ln

(
1 +

1

∂2
µ + εKµν

0 ∂µ∂ν
V̂
)]

+
1

12

[
ln(∂2

µ + εKµν
0 ∂µ∂ν),

[
ln(∂2

µ + εKµν
0 ∂µ∂ν),

ln
(

1 +
1

∂2
µ + εKµν

0 ∂µ∂ν
V̂
)]]

+ . . . . (13)

After constructing the divergent diagrams we extract
the logarithmically divergent terms and replace them
according to the prescription∫

dDk

(2π)2k2
→ 1

2π(D − 2)
. (14)

In the curved space we use the expansion with respect
to

hµν ≡ gµν − ηµν (15)

and after the calculation of the divergent part restore
the covariant result, using the equations:

Rµν =
1

2

(
∂µ∂αhνα + ∂ν∂αhµα − ∂µ∂νh− ∂2hµν

)
+O(h2);

R = ∂µ∂νhµν − ∂2h+O(h2). (16)

The result is

b2 = tr
(
W − 1

2
∇µSµ −

1

4
SµS

µ +
1

6
R

−1

2
εKααW − 1

2
ε∇µSµ +

1

4
ε(Kαα∇µSµ

+2Kµν∇µSν) +
1

8
ε(KααS2

µ + 2KµνSµSν)

− 1

12
εKααR+

1

6
εKµνRµν

)
. (17)

For ε = 0 this formula gives the result for the minimal
operator.

3 One-loop divergences for the spin 3 �eld in
nonminimal gauge

In order to understand if the one-loop divergences
for higher spin �elds are gauge dependent, we investi-
gate the simplest case D = 2, s = 3, considering the
parameters β and λ to be small. Then the classical
action with the gauge �xing terms in the lowest order
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in β and λ is written as

S + Sgf = −1

2

∫
d2x
√
−g
(

(∇αφµ1µ2µ3
)2

−3
[
1− 1

2
(1 + λ+ 2β)

]
(∇αφββµ3

)2

+3λ(∇αφαµ1µ2
)2 − 6(λ+ β)∇αφαβµ3

∇βφγγµ3

+
3

2
(λ+ 2β)(∇αφαββ)2 +

R

2
(φµ1µ2µ3

)2

+
[
3− 3

4
(1 + λ+ 2β)

]
R(φααµ3

)2
)
. (18)

The second variation of this expression with respect
to the �eld φα1α2α3

is the di�erential operator, corre-
sponding to one-loop diagrams with a loop of the spin 3
�eld. From this operator we construct matrixes εKµν ,
Sµ, and W and substitute them into Eq. (17). Then
we obtain the main part of the result

b2(main) =
1

3

(
20 + 36β − o(λ, β)

)
R. (19)

However, it is also necessary to take into account
diagrams with a ghost loop. For the considered gauge
the ghost Lagrangian is

Lgh = cµν(∇2
αcµν −

β

2
(∇µ∇ν +∇α∇µ)cαν

−β
2

(∇ν∇α +∇α∇ν)cαµ + (2 + β)Rcµν). (20)

Substituting the corresponding matrixes in formula
(17) for the b2 coe�cient we obtain the result for the
ghost contribution:

b2(ghost) =
1

3

(
13 + 18β + o(β)

)
R. (21)

Combining the results for b2(ghost) and b2(main) one ob-
tain the one-loop divergences

Γ
(∞)
1−loop

=
1

4π(D − 2)

∫
d2x
√
−g
(
b2(main) − 2b2(ghost)

)
=

1

4π(D − 2)

∫
d2x
√
−g
(
− 2R+ o(λ, β)

)
. (22)

This expression does not contain terms of the �rst order
in λ and β. Therefore, in the considered approximation
the result is gauge invariant.

4 Conclusion

We present a simple formula for the b2 coe�cient
of an arbitrary second order di�erential operator with
small nonminimal terms. In particular, this formula al-
lows to calculate terms with total derivatives. By the
same method it is possible to �nd a coe�cient b4. Now
this work is in progress. Using the constructed formula
in two dimensions we calculated a divergent part of the
one-loop e�ective action for the �eld of spin 3 on the
(anti)- de Sitter background in a nonminimal gauge.
The result appeared to be gauge independent in the
considered approximation (�rst order in the small pa-
rameters λ and β).
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Å. Ïîïîâà, Ê. Ñòåïàíüÿíö

ÎÄÍÎÏÅÒËÅÂÛÅ ÐÀÑÕÎÄÈÌÎÑÒÈ ÄËß ÏÎËß ÑÎ ÑÏÈÍÎÌ 3 Â ÏÐÎÑÒÐÀÍÑÒÂÅ
ÄÅ-ÑÈÒÒÅÐÀ Â ÍÅÌÈÍÈÌÀËÜÍÎÉ ÊÀËÈÁÐÎÂÊÅ

Ìû ðàññìàòðèâàåì ïîëå ñî ñïèíîì 3 â 2-ìåðíîì ïðîñòðàíñòâå äå-Ñèòòåðà è âû÷èñëÿåì ðàñõîäÿùóþñÿ ÷àñòü îäíîïåòëåâîãî
ýôôåêòèâíîãî äåéñòâèÿ. Ñ ýòîé öåëüþ ìû êîíñòðóèðóåì ïðîñòóþ ôîðìóëó äëÿ êîýôôèöèåíòà b2 ïðè ïðîèçâîëüíîì
äèôôåðåíöèàëüíîì îïåðàòîðå âòîðîãî ïîðÿäêà. Èñïîëüçóÿ ýòó ôîðìóëó, ìû ïîêàçàëè, ÷òî ðàñõîäÿùàÿñÿ ÷àñòü
îäíîïåòëåâîãî ýôôåêòèâíîãî äåéñòâèÿ äëÿ ðàññìàòðèâàåìîé òåîðèè íå çàâèñèò îò êàëèáðîâêè.

Êëþ÷åâûå ñëîâà: âûñøèå ñïèíû, ýôôåêòèâíîå äåéñòâèå, ïðîñòðàíñòâî (àíòè)-äå-Ñèòòåðà.
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