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One-loop divergences for the field of spin 3 on a de Sitter background in
nonminimal gauge
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We consider the field of spin 3 on the de Sitter background in two dimensions and calculate the the divergent part of the
one-loop effective action in a nonminimal gauge. For this purpose we construct a simple formula for the by coefficient of
an arbitrary second order differential operator with small nonminimal terms. Using this formula we find that the divergent
part of one-loop effective action for the considered theory is gauge independent.
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1 Introduction

Higher spins are described by the fields ¢, ;.. ..
which are totally symmetric and satisfy the condition

308" s = 0. (1)

The action for these fields on the flat background was
obtained in [1] for bosons and in [2] for fermions. It is
also possible to describe the higher spin fields on the
(anti)-de Sitter background:

(2)
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where R = const. Then the action for bosons has the
form:
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where the coefficients ¢; and ¢ are defined by the in-
variance of the action under the transformations

1
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The parameter o, ,. ..., is totally symmetric and
traceless aggus,..u,_; = 0.

In [3] it was shown that under certain assumptions
the consistent Lagrangian formulation for free bosonic
totally symmetric higher spin fields is possible only in
constant curvature Riemann space.

In order to calculate quantum corrections for the
considered theory (as for all gauge theories), it is nec-
essary to fix a gauge. It is well-known that the effective

higher spins, Minakshisundaram-De Witt-Seeley coefficients, (anti)-de Sitter space.

action is gauge independent on shell. However, explicit
calculations show that off shell the effective action de-
pends on the gauge choice, see e.g. [4]. The choice of
the minimal gauge considerably simplifies the calcula-
tions, especially on the curved background.

We will investigate the gauge dependence of the ef-
fective action for higher spin fields on the (A)dS back-
ground. For this purpose it is convenient to choose the
A, B gauge

ng = 5 /dD{E —g8(1+)\)[va¢aug‘uus

()

In this paper we calculate the divergent part of the
one-loop effective action in this gauge and show that
the result does not depend on the parameters A and S.

—%(S — 1)(1 + ﬁ)V(/L2¢aau;;...us)]2~

2 Algorithm for calculating the one-loop di-
vergences

In the one-loop approximation the effective action
is given by

Tlg] = S[¢] + %hTr mD + O(#?), (©)

where Tr includes [ dPz and the differential operator
D is defined by

528
Spidep;’

D= (7)
Gauge (5) is called nonminimal, because the corre-
sponding second variation of the classical action (with
the gauge fixing terms) is given by a nonminimal op-
erator

D~ V2 + K"V, V, + 8"V, + W (8)

— 130 —



H. Popova, K. Stepanyantz. One-loop divergences for the field of spin 3 on a de Sitter background...

in which terms with the largest number of derivatives
differ from the Laplace operator.

From the mathematical point of view, calculation of
the divergent part of the one-loop effective action cor-
responds to obtaining the Minakshisundaram-De Witt-
Seeley coefficients [5]- [10]. For the second order oper-
ator D these coefficients are defined by

N

tr{z| exp(isD)|r) = (4mis)D2

(bo + ba(is)

Fha(is)? + 0(33)). 9)
Using the dimensional regularization one-loop diver-
gences can be related with certain Minakshisundaram-
De Witt-Seeley coefficients. Really, taking into account
that

/% exp(is(D + i0)), (10)
0

it is easy to see, that, for example, for D ~ 2 the diver-
gent part of the one-loop effective action can be written
as

peo 1

e — D —
1—loop — 47T(D—2)/d Ty ng, (11)

Similar formulas can be also written for other
dimensions. For wvarious differential operators
Minakshisundaram-De Witt-Seeley coefficients can be
found using the Schwinger—De Witt technique and
its generalizations [11]- [14]. For a minimal opera-
tor heat kernel coefficients on the (A)dS background
can be found using harmonic analysis on homogeneous
spaces [15]. Using this method the one-loop effective
potential for fields of arbitrary spin on the (A)dS back-
ground in four dimensions was calculated in [16] in the
minimal gauge.

Here we use the generalization of the method pro-
posed by G.t’Hooft and M.Veltman [17]. Using this
technique by coefficient (without terms which are in-
tegrals of total derivatives) has been calculated for
an arbitrary differential operator [18]. However, on
the (A)dS background this algorithm does not work,
because terms containing total derivatives are essen-
tial. In order to take into account terms with total
derivatives we consider the simplest case: by coefficient,
which gives the divergences in two dimensions. More-
over, the nonminimal terms are considered to be small.
Namely, we consider the operator
D =V2+eK"V,V, + 8"V, + W, (12)
assuming ¢ — 0.

The divergent diagrams are constructed using the

expansion

In(D)
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After constructing the divergent diagrams we extract
the logarithmically divergent terms and replace them
according to the prescription

dPk 1
/ CmEE (D —2)

In the curved space we use the expansion with respect
to

(13)

(14)

h/w = g/w - nuy (15)

and after the calculation of the divergent part restore
the covariant result, using the equations:

Ry = %(auaahm + 0u0ulya — Quduh — 01
+0(h?);

R = 0,0,k — 0*h + O(h?). (16)
The result is

by = tr(W - %v“su - iSHS” + %R

—%sK‘mW - %5Vu5” + is(K“o‘VﬂS“

+2K"'V,S,) + %E(Kwsi +2K"S,S,)

—%EK“‘R—F %sKWR,w). (17)

For € = 0 this formula gives the result for the minimal
operator.

3 One-loop divergences for the spin 3 field in
nonminimal gauge

In order to understand if the one-loop divergences
for higher spin fields are gauge dependent, we investi-
gate the simplest case D = 2, s = 3, considering the
parameters S and A to be small. Then the classical
action with the gauge fixing terms in the lowest order
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in 8 and )\ is written as Combining the results for by(gnost) and ba(main) One ob-
1 tain the one-loop divergences
S+ 5g5 = ) /deV _g((va(buwws)Q
|: 1 ( ):| ( )2 I‘go—ol)oop
=31—=(1+X+20 Vaqi)gg#( 1
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3

+[3-Z+a+ 25)} R(gbm%)Z). (18)

The second variation of this expression with respect
to the field ¢n, a0, is the differential operator, corre-
sponding to one-loop diagrams with a loop of the spin 3
field. From this operator we construct matrixes e K*¥,
S#, and W and substitute them into Eq. (17). Then
we obtain the main part of the result
bQ(main) = é (20 + 365 - 0()‘3 5)) R. (19)

However, it is also necessary to take into account
diagrams with a ghost loop. For the considered gauge
the ghost Lagrangian is

B
2
(VuVa +VaVy)eau + (24 B)Reu).

Lgn = E’“’(Vic,w -

_B

2
Substituting the corresponding matrixes in formula

(17) for the by coefficient we obtain the result for the
ghost contribution:

(VuVy +VaVy)car

(20)

batgnost = 5 (13-+ 186 + o(5) ) B. (21)

This expression does not contain terms of the first order
in A and 8. Therefore, in the considered approximation
the result is gauge invariant.

4 Conclusion

We present a simple formula for the by coefficient
of an arbitrary second order differential operator with
small nonminimal terms. In particular, this formula al-
lows to calculate terms with total derivatives. By the
same method it is possible to find a coefficient b,. Now
this work is in progress. Using the constructed formula
in two dimensions we calculated a divergent part of the
one-loop effective action for the field of spin 3 on the
(anti)- de Sitter background in a nonminimal gauge.
The result appeared to be gauge independent in the
considered approximation (first order in the small pa-
rameters A and f3).
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E. Ilonosa, K. Cmenanvany,

OJHOIIETJIEBBIE PACXOIUMMOCTMUT AJIf ITOJIA CO CIIMHOM 3 B [TPOCTPAHCTBE
JE-CUTTEPA B HEMUHUMAJIBHOM KAJINBPOBKE

Mg paccMaTpUBaEM II0JI€ CO CIIMHOM 3 B 2-MePHOM IIPOCTPAHCTBe Ae-CHTTepa U BEIYUCIISEM PACKOISIIYIOCS YaCTh OJHONETIEBOr0
addexkruBHOro geiictBusa. C 3TOH [Meab0 MBI KOHCTPYHPYEM IPOCTYIO (pOpMyITy mis K03 punuenta by npu npon3BOILHOM
nuddepeHIIaIbHOM ONEPATOPE BTOPOro IopsiAka. Mcmosus3ys sty dopMyity, Mbl MOKa3ajM, 9TO PACXOIAIIASICH YaCThb
OAHOIEeTIeBOTO (D (PEKTUBHOTO NEHCTBUS AJIS PACCMATPUBAEMOIM TEOPUH HE 3aBHCHT OT KAJIHOPOBKH.

KnrodeBble CJI0Ba: éhicwiue cnunsl, sfdexmusnoe deticmeue, npocmparncmeo (anmu,)-de-Cummepa.
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