Для модели W:

$$\frac{R_1 + R_2 w}{(V_{11} + V_{2w})} = \frac{38.4 + 40}{(35.8 + 41)} = -3.\quad (15)$$

Разрушающие силы сильнее созидающих, следовательно, деятельность как в процессе, так и на уровне результатов может вызывать неусложненность, тем самым разрушительно влиять на личность. Требуется корректировка собственного влияния модели деятельности, используя собственного низкого потенциала при позиционировании в деятельности. Ситуация требует привлечения консультанта по планированию карьеры для корректировки программы личностного и профессионального развития. Клиентам консультанта по персоналу в данном случае являются:

- работодатель,
- HR-менеджер,
- претендент на кадровый резерв.

В случае консультаций с работниками по развитию и расстановке кадров определяющими являются требования к личности, представленные в модели 1, и подчиняется соответственно модель личности L. В случае консультаций с HR-менеджером, специалистом по планированию и управлению карьерой, определяющим является личностные компетенции, представленные моделью L, и корректируется модель деятельности W.

Полученная в результате анализа информация выносится на заключительную консультацию с претендентом в кадровый резерв. В ходе консультации уточняется информация:

- о его сильных и слабых качествах;
- о мотиваторах, стимулирующих профессиональное развитие;
- о направлениях дополнительного образования;
- о рекомендуемых профессиональных ролях в командной деятельности.

На основе уточнений в ходе консультации информация формируется план карьеры претендента, программы мотиваций, развития и ротации.

Таким образом, анализ сильных и слабых сторон личности, его недостаточным в деятельности потенциальных возможностях и качества, способных угрожать результатам деятельности, позволяет персонифицировать управление человеческими ресурсами организации, повысить надежность и качество кадрового резерва.

Литература

УДК 681.3:331.826

I.V. Невраева

АЛГЕБРАИЧЕСКИЙ ПОДХОД К АНАЛИЗУ КАДРОВОЙ СИТУАЦИИ В ОРГАНИЗАЦИИ

Томский государственный университет систем управления и радиоэлектроники

В рыночных условиях, чтобы быть конкурентоспособной организацией, недостаточно просто идти в ногу со временем, колонируя технологию передовых компаний, необходимо опережать время и для этого иметь собственный взгляд на развитие организации, собственную позицию относительно внешней среды, собственный путь, определенный миссией, стратегией, собственные идеи и т.п. А все, что связано с понятиями «собственный», обеспечивает личность. И не одна, а в компании, как доказывает психологическая и управленческая
теории и практики преуспевающих на рынке компаний.

Отбор в команду осуществляют по ключевым компетенциям компании, которые являются источником конкурентного преимущества и одним из факторов долгосрочного успеха жизнедеятельности команды, а как следствие, и организации в целом. Ключевые компетенции, как правило, учитывают как специфику профессиональной деятельности менеджера, так и ценностные характеристики организационной культуры. Например, такие как:

- «умение работать с документами»,
- «умение предусмотреть трудности, которые могут возникнуть в ходе реализации проекта»,
или:

- «умение рисковать»,
- «способность оценить результаты без учета принадлежности сотрудника к особому кругу» и т.д.

Кроме ключевых компетенций необходимо предусмотреть и командообразующие. Формирование команды способствует наличие у членов группы следующих компетенций:

- открытость и гибкость, умение выслушать мнение другого,
- умение систематизировать различные точки зрения и достигать консенсуса;
- четкость и последовательность позиций;
- умение брать на себя ответственность за общий результат.

Препятствуют формированию команды:

- потребность быть победителем,
- амбициозные, безапелляционные заявления;
- постоянная критика мнений и предложений других членов команды;
- равнодушное, апатичное, скучное.

Таких различного рода компетенций руководителем компании декларируется примерно десять. При формировании управленческой команды, на стадии подбора членов в команду, необходимо провести оценку у претендента ключевых компетенций. Как показывает практика, найти человека, абсолютно соответствующего всем требованиям, чрезвычайно сложно или практически невозможно. Тогда встает вопрос, каким образом обеспечить конкурентное преимущество или соответствие заданным компетенциям руководящего состава компании. Ответу на этот вопрос посвящена данная работа.

Для моделирования кадровых процессов в организации используется векторный подход.

Предпосылкой использования алгебраического подхода является определение для каждого претендента или сотрудника потенциального члена управленческой команды, векторной модели, элементами которой являются индикаторы состояний: \(+1 \), \(-1 \), \(0 \), характеризующие уровень выраженности требуемой компетенции.

\(+1 \) — индикатор, который характеризует действие или поведение объекта в соответствии с требованием ключевых компетенций;

\(-1 \) — индикатор, который характеризует действие или поведение объекта как противоположное требуемому в соответствии с ключевыми компетенциями. Например, если требуется человек с доминирующей позицией, а по результатам оценки он имеет \(-1 \), это означает, что оцениваемый претендент с высокой степенью вероятности склонен занимать исполнительскую позицию, по принципу «как скажет, так и сделает».

\(0 \) — индикатор, характеризующий высокую степень неопределенности поведения, непредсказуемости объекта управления. Поведение такого объекта обусловлено внешними обстоятельствами, он легко подвергается влиянию [2].

Для операций с персонифицированными векторными моделями построим таблицу алгебру на множестве исследуемых состояний. Для этого введем еще одно состояние \(U \)-состояние транспарентности или неполноты [3].

Таким образом, исходное множество известных состояний исследуемого объекта состоит из четырех элементов:

\[
S = \{0, +1, -1, U\}.
\]

Введем бинарные операции, которые каждой паре исследуемых объектов из множества \(S \) ставят в соответствие третий элемент состояния, отражающий согласованность действий в парах: пересечения (\(\cap \)), объединения (\(U \)) и дополнения. Три операции на множестве всех элементов множества \(S \) удовлетворяют основным алгебраическим законам, доказательство которых приводится ниже.

Для интерпретации операций или взаимодействия исследуемых объектов, используем диаграммы Венна:

1. Пересечение:
 \[+1 \cap -1 = 0. \]
 пересечение или противоположные по направленности действий или состояний, или точек
зрения приводит к деструктивному конфлиktу и дает нулевой результат. Этот факт подтверждается и третьим законом Ньютона о действии и противодействии.

**Объединение **

$+1 \cup -1 = U$.

Следствием операции объединения двух противоположных состояний, точка зрения, амбивалентности позиций является состояние целостности, трансцендентности, самоустойчивости системы, обеспечивающее ее развитие.

Дополнение

$(-1)^{'} = +1$.

Операция дополнения приводит к вновь, противоположной позиции, точке зрения, мнению, изменяя состояние объекта на противоположное. Для преобразования состояния управляемого объекта необходимо его переобучать или перепрограммировать.

Далее, в табл. 1 представлено доказательство 10 основных алгебраических законов [4], понимание которых позволит моделировать кадровые управленческие решения.

<table>
<thead>
<tr>
<th>№</th>
<th>Формулировка закона</th>
<th>Доказательство</th>
</tr>
</thead>
</table>
| L1 | Идемпotentности $S \cap S = S$, $S \cup S = S$ | $+1 \cap +1 = +1$
$+1 \cup +1 = +1$
$U \cap U = U$
$U \cup U = U$
$-1 \cap -1 = -1$
$-1 \cup -1 = -1$
| | Объединение состояния с идентичным состоянием объекта не изменяет первоначального состояния. |
| L2 | Коммутативности $S \cap T = T \cap S$, $S \cup T = T \cup S$ | $+1 \cap -1 = 0$
$-1 \cap +1 = 0$
$+1 \cup U = U$
$U \cap +1 = U$
$+1 \cap 0 = 0$
$0 \cap +1 = 0$
$+1 U - 1 = U$
$-1 \cup +1 = U$
$+1 \cup U = U$
$U \cup +1 = U$
$-1 \cup U = U$
$U \cup -1 = U$
| | От пересечения объектов с различным состоянием их поведенческое проявление в паре не изменяется. |

При этом пересечение \cap противоположных проявлений (ценностей, интересов, точек зрения) приводит к конфликту 0 и, как следствие, к нулевому результату. Объединение \cup — к объединению интересов и, как следствие, — к достижению состояния целостности, трансцендентности, самоустойчивости U. |
Окончание таблицы 1

<table>
<thead>
<tr>
<th>L3</th>
<th>Ассоциативности</th>
</tr>
</thead>
<tbody>
<tr>
<td>R ∩ (S ∪ T) =</td>
<td>+1 ∩ (-1 ∪ +1) = 0 + 1 ∩ 0 = 0</td>
</tr>
<tr>
<td>= (R ∩ S) ∩ T;</td>
<td>(+1 ∩ -1) ∩ +1 = 0 ∩ +1 = 0</td>
</tr>
<tr>
<td>R ∪ (S ∪ T) =</td>
<td>+1 ∪ (-1 ∪ +1) = +1 ∪ U = U</td>
</tr>
<tr>
<td>= (R ∪ S) ∪ T</td>
<td>(+1 ∪ -1) ∪ +1 = U ∪ U = U</td>
</tr>
</tbody>
</table>

При пересечении 0-й элемент (личностная неопределенность) играет роль разрушающую, не способствующую подъему результативности совместной деятельности, усиливая неопределенность результатов взаимодействия группы.

+1 ∩ (-1 ∩ 0) = 0
+1 ∩ (+1 ∩ 0) = 0

В случае объединения 0-д определяется элементом, который находится ближе

+1 ∪ (-1 ∪ 0) = +1 U - 1 = U
-1 ∪ (+1 ∪ 0) = -1 ∪ +1 = U

Поведение нуля доопределается элементом, находящимся ближе (имеется в виду психологическая дистанция).

(+1 ∪ -1) ∪ 0 = U ∪ 0 = U

<table>
<thead>
<tr>
<th>L4</th>
<th>Поглощения</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ∩ (S ∪ T) =</td>
<td>+1 ∩ (+1 ∪ -1) = +1 ∩ U = +1</td>
</tr>
<tr>
<td>A</td>
<td>+1 ∩ (+1 ∩ -1) = +1 ∩ 0 = +1</td>
</tr>
</tbody>
</table>

Состояние, превалирующее в системе (в данном примере соответствующее «+1»), поглощает более слабое состояние («-1»).

<table>
<thead>
<tr>
<th>L5</th>
<th>Модулярный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Если R⊂T, то</td>
<td></td>
</tr>
<tr>
<td>R ∪ (S ∩ T) =</td>
<td>+1 ∩ U</td>
</tr>
<tr>
<td>= (R ∪ S) ∩ T</td>
<td>+1 ∪ (-1 ∩ U) = +1 U U = U</td>
</tr>
<tr>
<td>Либеральный</td>
<td>(+1 ∩ -1) ∩ U = U ∩ U = U</td>
</tr>
</tbody>
</table>

Присоединение элемента к системе не нарушает её целостности.

<table>
<thead>
<tr>
<th>L6</th>
<th>Дистрибутивности</th>
</tr>
</thead>
<tbody>
<tr>
<td>R ∩ (S ∪ T) =</td>
<td>+1 ∩ (+1 ∪ -1) = +1 ∩ +1 = +1</td>
</tr>
<tr>
<td>= (R ∩ S) ∪ (R ∩ T)</td>
<td>(+1 ∩ +1) ∪ (+1 ∩ -1) = +1 U 0 = +1</td>
</tr>
</tbody>
</table>

Независимо от структуры взаимодействия сильнее остается превалирующее состояние в системе.

+1 ∪ (+1 ∩ -1) = +1 ∪ 0 = +1

(+1 ∪ +1) ∩ (+1 ∪ -1) = +1 ∪ U = +1

<table>
<thead>
<tr>
<th>L7</th>
<th>Универсальные граници</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нижня R ∩ R' = 0</td>
<td></td>
</tr>
<tr>
<td>R ∪ U = R</td>
<td></td>
</tr>
<tr>
<td>Верхня R ∪ R' = U</td>
<td></td>
</tr>
<tr>
<td>R ∪ U = U</td>
<td></td>
</tr>
</tbody>
</table>

Состояние (-1) есть дополнение состоянию (+1)

(+1)' = -1
(+1) ∩ (+1)' = +1 ∩ -1 = 0
+1 ∩ +1 = +1
(+1) ∪ (+1)' = +1 ∪ +1 = +1
+1 ∪ U = U

Дополнительное состояние системы доставляет её до целостности, обеспечивая своего рода самодостаточность системы в смысле обеспечения ее все возможными способами поиска и решения задач, новых возможностями достижения целей.

<table>
<thead>
<tr>
<th>L8</th>
<th>Дополняемость</th>
</tr>
</thead>
<tbody>
<tr>
<td>R ∩ R' = 0</td>
<td></td>
</tr>
<tr>
<td>R ∪ R' = U</td>
<td></td>
</tr>
</tbody>
</table>

Доказательство следует из предыдущего и еще раз показывает, что состояние (-1), противоположное исходному (+1), может приводить к конфлиktу (0) интересов в случае их пересечения и приводит к состоянию трансцендентности, целостности, самодостаточности — в случае объединения интересов в достижении цели.

<table>
<thead>
<tr>
<th>L9</th>
<th>Инволютивный</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)' = S</td>
<td></td>
</tr>
</tbody>
</table>

Возможно изменить состояние объекта на противоположное и вернуть опыт в признанное состояние.

<table>
<thead>
<tr>
<th>L10</th>
<th>Де Моргана</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S ∩ T)' = S ∪ T</td>
<td></td>
</tr>
<tr>
<td>(S ∪ T)' = S ∩ T</td>
<td></td>
</tr>
</tbody>
</table>

(+1 ∩ -1)' = 0' = U
(+1 ∪ -1)' = -1 ∪ +1 = U
(+1 U - 1)' = U' = 0
(+1 ∩ -1)' = -1 ∩ +1 = 0

Нет смысла дополнить целостную систему. Если необходимо модифицировать систему, ее придется пересмотреть и перестроить заново.
Множество всех частей \(P(U) \), любого множества \(U \), образует алгебраическую систему \(\{ P(U), \cup, \cap, \cap' \} \) с тремя теоретико-множественными операциями, которые были описаны выше. Свойства 1 - 10 алгебраической системы позволяют отнести ее к классу булевых алгебр, в которой операции задаются следующими таблицами.

Таблица 2

<table>
<thead>
<tr>
<th>(\cap)</th>
<th>0</th>
<th>1</th>
<th>(-1)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(-1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(U)</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица 3

<table>
<thead>
<tr>
<th>(\cup)</th>
<th>0</th>
<th>1</th>
<th>(-1)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(U)</td>
<td>(U)</td>
</tr>
<tr>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(U)</td>
<td>0</td>
<td>(U)</td>
<td>0</td>
<td>(U)</td>
</tr>
</tbody>
</table>

Читать таблицы нужно так:

На пересечении строки \(a \) и столбца \(b \) стоит результат указанной операции, произведенной под упорядоченной парой \((a, b)\).

Таким образом, мы построили систему элементов и операций,

\[
P(U) = \{ \{-1\}, \{+1\}, \{U\}, 0, U, \cap, \cap' \}.
\]

которая позволяет оперировать персонифицированными векторными моделями, планировать персонал, формировать и моделировать отношения в команде, планировать развитие и прогнозировать результат совместных усилий для достижения цели.

Применение введенных операций \(\cup, \cap, \cap' \) для анализа и оптимизации структуры взаимоотношений на одном из примеров.

В качестве примера рассмотрим векторную матрицу одной из исследуемых организаций, приведенную в табл. 4.

Таблица 4

Векторные модели управляемого персонала организации, построенные в соответствии с выраженностью 10-ти ключевых компетенций

<table>
<thead>
<tr>
<th>№</th>
<th>ФИО</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Сотрудник 1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>A2</td>
<td>Сотрудник 2</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>A3</td>
<td>Сотрудник 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>A4</td>
<td>Сотрудник 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>A5</td>
<td>Сотрудник 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A6</td>
<td>Сотрудник 6</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>A7</td>
<td>Сотрудник 7</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A8</td>
<td>Сотрудник 8</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>A9</td>
<td>Сотрудник 9</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>A10</td>
<td>Сотрудник 10</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Согласно табл. 4 исследуемое множество объектов, обозначим их a_i, состоит из 10 элементов.

$$A = \{a_1, a_{10}\}.$$ (3)

Таким образом, количество собственных подмножеств множества A равно $2^{10} - 2 = 1022$, исключив 10 собственных элементов $a_1, a_2, ..., a_{10}$ и получим $1022 - 10 = 1012$ различных сочетаний элементов: в парах, в тройках и т.д. до группы численностью 9 человек.

Выберем из всего множества отношений только наиболее результативные. Результативными назовем отношения в основном определенные, то есть отношения, в которых значений 9 и 1 не более 30%. При формировании и анализе отношений используем операции \cup и \cap.

$$a_1 \cup a_2 = +1 + 1 + 1 + 1U + 1 + 1 + 1 + 1 + 1$$
$$a_1 \cup a_3 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_1 \cup a_5 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_2 \cup a_3 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_2 \cup a_5 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_2 \cup a_6 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_3 \cup a_5 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_3 \cup a_7 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$
$$a_3 \cup a_8 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$

При рассмотрении отношения между элементами a_1 и a_2 $+$ и 0 - бессмысленный эффект, не означает влияния, ничего не изменяет в соответствии с заданным критерием в группе.

$$a_1 \cap a_2 = +1 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1$$

Рассмотрим конкретный пример формирования команды из пяти объектов. Предположим, для описания объектов использовались следующие ключевые компетенции:

1. Амбициозность, стремление к лидерству.
2. Способность планировать и достигать результат.
3. Умение создавать условия для достижения цели.
4. Умение влиять на людей и ситуацию.

5. Справедливость, умение объективно и беспристрастно оценивать результат.
6. Способность брать ответственность за результат.
7. Умение считывать необходимую информацию.

Результаты диагностики по заданным критериям для пяти участников ЦВ приведены в табл. 5.

Таблица 5

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование критерия</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Амбициозность, стремление к лидерству</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>Способность планировать и достигать результата</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Умение создавать условия для достижения цели</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>4</td>
<td>Умение влиять на людей и ситуацию</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>5</td>
<td>Справедливость, умение объективно и беспристрастно оценивать результат</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>6</td>
<td>Способность брать ответственность за результат</td>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>7</td>
<td>Умение считывать необходимую информацию</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

Нам необходимо подобрать объекты так, чтобы их совместная деятельность соответствовала идеалу, т.е. совокупный вектор содержал только элементы типа «+1». Назовем такие группы объектов — результативными. Слабо результативными отношениями назовем отношения, не содержащие нулевые элементы. Перезатрудняющими отношениями назовем отношения, содержащие нулевые элементы.

Процесс анализа кадровой ситуации и моделирования результативного взаимодействия начинается с построения векторной модели группы табл. 6.
Таблица 6

Векторная модель исследуемой группы

<table>
<thead>
<tr>
<th>Индексатор объекта</th>
<th>Значения по критериям</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>a_2</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>a_4</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>a_5</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Строки матрицы содержат векторные модели исследуемых объектов. Столбцы матрицы — значения по критериям.

Всего на данном множестве объектов $A = \{a_1, \ldots, a_5\}$ существует $(2^5 - 2) = 30$ возможных их сочетаний:

- 10 парных, характеризующих взаимодействие в парах типов $a_i \cup a_{-i};$
- 10 тринадцать $a_i \cup a_{-i} \cup a_{-j};$
- 5 квадретов, характеризующих взаимодействие в квадрах типов $a_i \cup a_{-i} \cup a_{-j} \cup a_{-k}.$

Структуризация взаимодействия.

Анализируем результативное взаимодействие объектов в парах. В рассмотриваемом примере нет ни одного результативного взаимодействия.

Анализируем слабо результативное взаимодействие объектов в парах:

позиция сотрудничества \cup

- $a_1 \cup a_2 = +1 + 1 + 1 + 1 + 1 - 1 U$
- a_1 усиливает a_2 в соответствии с требованием компетенций k_1 и k_2;
- a_2 усиливает a_1 в соответствии с требованием компетенций k_3 и k_4;
- a_3 усиливает a_1 в соответствии с требованием компетенций k_5 и k_6.

Анализируем интерсультативное взаимодействие объектов в парах:

$$ (a_1 \cap a_2) = 0 + 1 + 1 0 0 0 0 $$
$$ (a_4 \cap a_5) = +1 0 0 0 0 0 $$
$$ (a_1 \cap a_3) \cup (a_4 \cap a_5) = +1 +1 + 1 0 0 0 0 $$

Вводим во взаимодействие объект a_7:

Структуризацию взаимодействия объектов a_7:

- $a_7 \cup (a_1 \cap a_3) \cup (a_4 \cap a_5) = +1 +1 +1 +1 +1 -1 -1 -1 U$
- $a_7 \cup (a_1 \cup a_3)$ усиливает a_1 в соответствии с требованием компетенций k_1 и k_2;

Отношения, содержащие один нуль в кумулятивном векторе будут называться критическими.

- $a_2 \cap a_3 = 00000$ критическое отношение

Такие отношения регулируются только формальной правилами. Критические отношения разрушают команду. «Нули» — это не есть команда. Либо подбирают других людей, либо ориентируются на другие идеи, которым эти люди соответствуют. При формировании эффективной управленческой команды «нули» следует минимизировать как в персональных векторах, так и в векторах отношений.

Таким образом, алгоритмический подход позволяет:

1. Строить модели идеальной организации.
2. Планировать подбор в команду на основе требований ключевых компетенций (критерии отбора).
И.В. Невраева. Прогноз профессиональной успешности менеджера

3. Структурировать отношения.
4. Формировать программу развития.
5. Выявлять кадровый резерв.
6. Определять «пустые» элементы в системе.
7. Минимизировать конфликты, обеспечивая сплоченность команды за счет подбора и взаимодополнения по ключевым компетенциям.

Кроме того, необходимо помнить, что наилучшим вариантом формирования отношений в команде является такой, когда участники знают сильные стороны друг друга и используют их для достижения общих целей. Учитывая этот факт, предложенный подход можно использовать и в групповой работе для моделирования эффективных команд.

Литература

1. Пугачев Б.П. Руководство персоналом организации: Учебник. М., 1999.
3. Невраева И.В. Векторная модель организации / Тенды доминарии в сборнике ТУСУР. Томск, 2002.

УДК 681.3:331.826

И.В. Невраева

ПРОГНОЗ ПРОФЕССИОНАЛЬНОЙ УСПЕШНОСТИ МЕНЕДЖЕРА

Томский государственный университет систем управления и радиоэлектроники

В настоящее время актуальной является проблема оценки и подбора персонала в организации. Особенно она касается менеджерского состава, для которого является важным соответствовать требованиям не только профессиональных, но и корпоративных компетенций. Именно менеджер организации является носителем ее культурных ценностей и, в этой связи, особых ожиданий со стороны работодателя. Каждый руководитель стремится найти идеального, боится ошибиться при подборе, потратить время и деньги впустую. Но менеджер, прежде всего, человек и, как любой, человек, не идеален. И может только в большей или меньшей степени соответствовать ценностям организационной культуры, ожиданиям руководства, выраженным в формулировках корпоративных компетенций и оценки их значимости в деятельности.

В данной работе предлагается алгоритм расчета прогноза профессиональной успешности менеджера, подбираемого в компанию, и анализ соответствия его деятельности.

Алгоритмы прогноза и анализа строятся на основе информационного подхода. Для построения информационных моделей используется метод ранжирования и весовых коэффициентов, полученных на основе экспертных оценок.

В частности, для построения модели деятельности руководителя организации и на основе участника процесса деятельности предлагается определить влияние измеряемых профессиональных и личностных компетенций на результаты деятельности. При этом модель деятельности, построенная руководителем, отражает идеальную ситуацию, как хотелось бы (I), а модель деятельности, построенная самим участником процесса деятельности, — ближе к реальной — «как есть» (W). Уже само сопоставление реальной и идеальной ситуаций позволяет определить степень рассогласования при позиционировании сотрудника в деятельности и достигнут взаимопонимания при определении главных и второстепенных факторов личности в процессе деятельности.

На основании экспертных оценок респондентов, отражающих значимость (вес) измеряемого качества личности в процессе деятельности, формируется численная последовательность элементов

\[W = (W_1, W_2, ..., W_i, ..., W_k), \]

(1)