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We argue that de Sitter universes with a small cosmological constant are entropically favored to have three spatial
dimensions. The conclusion relies on the causal-patch description of de Sitter space, where �ducial observers experience
local thermal equilibrium up to a stretched horizon, on the holographic principle, and on some assumptions about the
nature of gravity and the constituents of Hawking/Unruh radiation.
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1 Introduction

The fact that the observable Universe has three
large dimensions of space de�es explanations other
than anthropic [1]. This issue is sharpened by String
Theory, which allows a humongous multitude of
universes with various dimensions [2]. One may wonder
whether the Anthropic Principle is the only way to
understand the observed spacetime dimensionality.

The standard view of cosmology holds that the
Universe began with an epoch of in�ation, during
which spacetime geometry was approximately de
Sitter [3]. One may present particular frameworks
in which in�ation is one among various competing
cosmological scenarios, whose relative probabilities of
creation can be quanti�ed [4, 5]. In the braneworld
context in String Theory, it can be argued that
the quantum creation of in�ationary universes prefers
one similar to our early Universe [6]. String gas
cosmology may also shed light on how only three
(or less) spatial dimensions could have grown into a
macroscopic size [7]. Other attempts to understand the
dimensionality of spacetime can be made in the context
of brane gas dynamics [8] or by invoking some entropic
principle [9].

On the other hand, the late phase of our Universe
is asymptotically de Sitter with a small cosmological
constant [10]. One may ask whether this ultimate
phase can be (partly) understood by an entropic
principle: the �nal spacetime con�guration must have
maximum entropy for a given amount of energy. In
this note we will argue, under certain fairly justi�able
assumptions (to be spelled out as we proceed), that
an asymptotically de Sitter universe with a small
cosmological constant is entropically favored to have
three spatial dimensions. Our regime of interest for the
possible number of spatial dimensions, d, is 2 ≤ d ≤ 10.

Such a restriction follows if one assumes that gravity
is described by General Relativity in the infrared, and
that the underlying theory of quantum gravity yields
Supergravity as some low-energy approximation.

2 de Sitter Space & Entropy Thereof

We will use the natural units: c = ~ = kB = G = 1.
In (d+ 1) spacetime dimensions, this sets to unity the

Planck length, lP ≡ d−1
√
G~c−3, and the Planck mass,

MP ≡ ~c−1l−1
P , which however may be carried around

for the sake of clarity.
Let us write down the (d+1)-dimensional de Sitter

metric in the static coordinates:

ds2 = −(1−H2r2) dt2 +
dr2

1−H2r2
+ r2 dΩ2

d−1, (1)

where dΩ2
d−1 is the line element on Sd−1, and the

Hubble parameter H is related to the (positive)
cosmological constant as: Λ = 1

2d(d − 1)H2. The
apparent singularity at r = 1/H is a coordinate
artifact. One can analytically extend the metric to a
geodesically complete spacetime of constant curvature
with topology Sd × R1, where r = 0 represents
antipodal origins of polar coordinates on a d-sphere.
However, no single observer can access the entire de
Sitter space: an observer at r = 0 experiences the
presence of an event horizon at a distance r = 1/H.
The �causal patch� of the observer is the region which
is in full causal contact with her, namely 0 ≤ r ≤
1/H. The horizon is observer-dependent in that any
observer following a time-like geodesic can be chosen
to be at r = 0, and two such observers will belong to
di�erent causal patches. While the isometry group for
de Sitter space is SO(d+1, 1), the manifest symmetries
of the causal patch are SO(d) rotations plus translation
in t. The remaining d compact and d non-compact
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generators displace an observer from one causal patch
to another.

In what follows we will restrict all attention to a
single causal patch, �a la [4, 11]. As regions that are
out of causal contact with a particular observer have
no operational meaning to her, the observer should
consider the physics inside her horizon as complete,
without making reference to any other region. Without
loss of generality, this we can choose to be the
�southern� causal patch, where the Killing vector ∂t
is time-like and future-directed, so that time evolution
is well de�ned. We imagine that the causal patch is
�lled with ��ducial observers� (FIDOs), each of whom
is at rest relative to the static coordinate system,
i.e. each is located at a �xed r and �xed values of
the angular variables. The only geodesic observer is
the FIDO at r = 0, whom we call the �principal
investigator� (PI). The PI can send a request to any
other FIDO to perform certain local measurements and
report the results, which the PI will eventually receive
after waiting for a �nite amount of time.

The PI at r = 0 detects a thermal radiation with
a temperature TGH = H/2π−the Gibbons-Hawking
temperature of de Sitter space [12]. More generally, a
FIDO at a radial position r, whose Killing orbit has
a proper acceleration a = H2r/

√
1−H2r2, detects a

thermal bath with an e�ective local temperature [13]:

T (r) =
1

2π

√
H2 + a2 =

H

2π
√

1−H2r2
, (2)

which is just the Gibbons-Hawking temperature
multiplied by a Tolman factor [14]. Using an Unruh-
like detector [15], the FIDO can indeed discover a
thermal radiation with the temperature T (r). This
e�ect is real, and can also be understood as pure
Unruh e�ect associated with Rindler motion in the
global embedding Minkowski space [16]. The local
temperature, however, blows up at the horizon r =
1/H. A way to regularize this divergence is to consider
a �stretched horizon� [17], that extends from the
mathematical horizon (by some Planck length) up
to some rc < 1/H. The thickness may well be a
physical reality, originating possibly from quantum
�uctuations [18]. The temperature measured at the
stretched horizon is then large but �nite:

Tc ≡ T (r = rc) =
H

2π
√

1−H2r2
c

<∞, (3)

which sets a cuto� value for the temperature. It is
natural to identify the cuto� with the Planck scale.
In our case it will indeed turn out that Tc ∼MP.

A global notion of temperature is not meaningful
in curved spacetime [14]. Instead, one may need to
introduce operationally meaningful local concepts of
temperature and thermal equilibrium [19]. It was

shown in Ref. [13] that the unique invariant locally
Minkowskian state of quantum �elds in de Sitter space
has exactly the temperature given by (2). We will
therefore consider only local thermal equilibrium with
temperature T (r) of the physical degrees of freedom
(DOF) accessible to a FIDO at a radial position
r. What DOFs does the thermal radiation contain,
i.e., what are the constituents of Hawking/Unruh
radiation? Postponing justi�cation until later, let us
assume that the accessible number of DOFs, D, does
not depend on r.

The PI can ask a FIDO at radial position r to
measure the local entropy density, and receive the
result

σ(r) =

(
d+ 1

d

)
D a(d) [T (r)]d, (4)

where a(d)−the radiation constant per DOF in d
spatial dimensions−is given by

a(d) =
ω(d)

(2π)d
ζ(d+ 1) Γ(d+ 1), ω(d) ≡ 2πd/2

Γ
(
d
2

) , (5)

ω(d) being the surface area of the boundary of a unit
d-ball. The PI can take the volume integral of (4) to
compute the total thermal entropy of the causal patch:

S = ω(d)

∫ rc

0

dr rd−1

√
1−H2r2

σ(r). (6)

This integral can be expressed in terms of
hypergeometric functions by the variable rede�nition:
x ≡ H2r2, and the use of the integral
representation [20]:∫ z

0

dxxα−1

(1− x)1−β =
zα

α
(1−z)β 2F1(α+β, 1;α+1; z), (7)

which holds for R(α) > 0. Thereby the PI �nds that
the total entropy amounts to

S =

(
d+ 1

d2

)
Dω(d) a(d)

(√
1− ε
2π

)d(
1√
ε

)d−1

× 2F1

(
1
2 , 1; d+2

2 ; 1− ε
)
, (8)

where ε is a positive number de�ned as

ε ≡ 1−H2r2
c =

(
H

2πTc

)2

. (9)

Note that ε � 1, because we consider H/2π to be
much smaller than Tc ∼ MP, which is necessary
for a semiclassical treatment to be valid. The total
entropy (8), which clearly diverges in the limit ε → 0,
is rendered large but �nite by the stretched horizon.

Now, there is an entropy associated with de Sitter
horizon, known as the Gibbons-Hawking entropy [12],
which is 1

4 of the horizon area, A, in Planck units:

SGH =
1

4

A

l d−1
P

=
1

4
ω(d)

(
MP

H

)d−1

. (10)
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To see its possible connection with the total entropy (8)
of the causal patch, we note that the hypergeometric
function appearing in the latter can be written as [20]:

2F1

(
1
2 , 1; d+2

2 ; 1− ε
)
≡
(

d

d− 1

)
[ 1 + δ(d, ε) ] , (11)

where the function δ is such that it vanishes in the limit
ε → 0. Thanks to Eq. (11) and some properties of the
gamma function, one can rewrite the entropy (8) as

S = ω(d)

[
DΓ

(
d+3

2

)
ζ(d+ 1)

(d− 1)(
√
π )d+3

](
Tc
H

)d−1

+ ... , (12)

where the ellipses stand for subleading terms. Their
H-dependencies di�er from that of the leading term,
which mimics the area law (10) for de Sitter entropy.

Now we invoke the holographic principle, which
entails that the leading term in (12) should be
identi�ed with the Gibbons-Hawking entropy (10) of
the de Sitter horizon [21]1. This relates the cuto�
temperature Tc and the Planck mass MP in the
following way:

Tc
MP

=

[
(d− 1)(

√
π )d+3

4DΓ
(
d+3

2

)
ζ(d+ 1)

] 1
d−1

. (13)

Similar relations show up in the brick wall model,
propounded in [22], and subsequently used for dS3

in [23]. Note that the cuto� Tc is independent of the
Hubble parameter H, as expected, but depends on
the number of DOFs in a way that is in complete
accordance with the results of [24]. With some
reasonable assumptions on D, the right-hand side of
Eq. (13) is O(1). This sets Tc ∼ MP. Then, it is easy
to see that the thickness of the stretched horizon is
O(lP). With the identi�cation (13), one can now make
explicit the area dependence of the entropy:

S =
A

4

(
d− 1

d

)
(1− ε)d/2 2F1

(
1
2 , 1; d+2

2 ; 1− ε
)
, (14)

where the parameter ε depends on A as follows

ε =
1

4π2

[
8DΓ

(
d+3

2

)
ζ(d+ 1)

A (d− 1)π3/2 Γ
(
d
2

) ] 2
d−1

. (15)

In the limit ε→ 0 or A→∞, thanks to Eq. (11), S/A
reaches the value 1

4 for any space dimensionality.
Similarly, the PI can de�ne the total �energy� of the

causal patch as follows.

E = ω(d)

∫ rc

0

dr rd−1

√
1−H2r2

ρ(r), (16)

where ρ(r) = D a(d) [T (r)]d+1 is the local energy
density that a FIDO at a radial position r reports to
the PI. Again, using the integral representation (7) one
�nds

E =

(
H

2πd

)
Dω(d) a(d)

(√
1− ε
2π

)d(
1√
ε

)d
. (17)

Expressing
√
ε in terms of the cuto� temperature

Tc through the relation (9), one arrives at a rather
counter-intuitive conclusion: the �energy� scales like
(1/H)d−1 ∼ A. This is due to the extra factor of H
appearing in Eq. (17). More explicitly,

E =

(
A

2πd

)
D a(d) (1− ε)d/2 T d

c . (18)

Finally, using the expression (13) for Tc, one �nds after
some simpli�cations that the total �energy� is given by

E =
A

4

(
d− 1

d+ 1

)
(1− ε)d/2

×

[
(d− 1)(

√
π )d+3

4DΓ
(
d+3

2

)
ζ(d+ 1)

] 1
d−1

, (19)

That the total �energy� (19) follows an area law just
like the total entropy was also noticed in Ref. [25] for
a box of ideal gas kept near a de Sitter horizon. It
is therefore natural to consider the quantity E as an
attribute of the de Sitter horizon.

Our total �energy� E is unique and well de�ned
in the following sense. As soon as the de Sitter
entropy (14) is taken to be �nite, we must forgo the
symmetry of di�erent causal patches [11]. In the given
causal patch, all the FIDOs are on equal footing in
that they all follow time-like trajectories, are in causal
contact with one another, and of course experience the
same causal horizon. Any quantity to be attributed to
the entire causal patch or to the horizon itself must
not depend on which FIDO, be her the PI or not, is
assigned the job of de�ning it. In other words, all the
FIDOs must agree upon the value of any such quantity.
Now that any FIDO can learn about the results of
local measurements performed by any other FIDO,
they all will have identical sets of data for the density
distributions σ(r) and ρ(r), and therefore will agree
upon their respective volume integrals S and E. This
is not the case if in the de�nition (17) one inserts a
redshift factor (as was suggested in Ref. [25]), which
itself depends on the position of the FIDO assigned to
de�ne the quantity.

Eqs. (14) and (19) can be viewed as relations among
three extensive properties of the horizon, namely S, E
and A. Dividing Eq. (14) by (19), one can also write

1De�ning the entropy of the causal patch as (6) and identifying it with the Gibbons-Hawking entropy (10) has also been suggested
by N. Kaloper in a talk titled �In�ation and leaky cans�. We thank L. Sorbo for pointing this out.
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S

E
=

(
d+ 1

d

)[
4DΓ

(
d+3

2

)
ζ(d+ 1)

(d− 1)(
√
π )d+3

] 1
d−1

× 2F1

(
1
2 , 1; d+2

2 ; 1− ε
)
. (20)

It is clear, in view of Eq. (11), that in the limit
ε→ 0, the ratio S/E is �nite, although both S and E
diverge. For ε� 1, Eq. (20) can be approximated as

S ≈
(
d+ 1

d− 1

)[
4DΓ

(
d+3

2

)
ζ(d+ 1)

(d− 1)(
√
π )d+3

] 1
d−1( E

MP

)
. (21)

The virtue of Eq. (21) is that it allows one to compare
the entropies of de Sitter spaces with di�erent d, for a
given E in Planckian units. It does not make sense to
compare the horizon areas of two spaces with di�erent
dimensionalities, and indeed A does not appear in (21).

3 Is 4D Spacetime Entropically Favored?

Let us �rst note that the Hawking/Unruh radiation
is (approximately) thermal. Then, in order for the
density distributions σ(r) and ρ(r) to be smooth, the
constituent particles of the radiation cannot have mass
m & H. This also means that the accessible number of
DOFs does not depend on r. If the Hubble parameterH
is smaller than the mass of the lightest massive DOF,
only strictly massless particles would contribute to the
DOFs constituting the radiation. Known di�culties
with massless higher spins [26] then make it natural
to consider only particles of spin s ≤ 2. If there
is a massless spin-1 particle, no other particle can
be charged under this, because otherwise interactions
would render the radiation non-thermal. While the
Hawking/Unruh e�ect is very fundamental and takes
place in all dimensions, a massless chargeless fermion
can exist only in some particular dimensions. This rules
out spin-1/2 and spin-3/2 particles as non-generic.
Scalars are also ruled out, since there is no symmetry
to assure their masslessness. So we are left only with
spin-1 and spin-2 particles, whose masslessness can be
guaranteed by gauge invariance. Now, there is one and
just one massless spin 2, namely the graviton [26]. More
than one vector particle is not a possibility, because
they either con�ne and cease to exist as long-range
particles (when they are mutually charged), or there
is no way to distinguish them as di�erent constituent
particles of the radiation. At any rate, that photons and
gravitons could be the sole constituents of the radiation

may not seem so surprising given that these are the
natural DOFs to consider at low energy.

Thus one can assume, quite justi�ably, that for
a small cosmological constant the Hawking/Unruh
radiation will be a gas of photons and gravitons,
whose interactions are negligible. In (d+ 1) spacetime
dimensions photon has (d−1) DOFs, while graviton has
1
2 (d+ 1)(d− 2). The total number of DOFs is therefore

D ≡ D(d) = (d− 1) + 1
2 (d+ 1)(d− 2). (22)

Let us consider universes that evolve from some
initial state into a �nal state of a de Sitter space with
a small cosmological constant, like our Universe [10].
The asymptotically de Sitter universes are assumed
to have di�erent dimensionalities, but the same values
of the fundamental constants, which all can be set to
unity (we do not consider scenarios in which the Planck
mass MP may depend on spacetime dimensionality).
Now for any given value of the characteristic quantity
E, one can use Eq. (21) to formally consider S as a
function of the number of space dimensions d. Is there
any particular value of d that is favored entropically?

In the regime 2 ≤ d ≤ 10, when d is treated as a
continuous variable, its function S/E has an absolute
maximum at d ≈ 2.97. An upper bound on d is
essential since the function increases monotonically as
S/E ∼

√
d/2πe for large d. Explicitly, the respective

values for d = 2, 3, 4, . . . 10 are approximately
1.096, 1.495, 1.458, 1.425, 1.409, 1.404, 1.407, 1.414, and
1.425. For a given value of the �energy� E, the entropy
is therefore maximum for d = 3. In other words,
a universe whose �nal con�guration is a de Sitter
phase with a small cosmological constant is entropically
favored to have three spatial dimensions.
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À. Ìîìåí, Ð. Ðàìàí

ÐÀÇÌÅÐÍÎÑÒÜ ÏÐÎÑÒÐÀÍÑÒÂÀ-ÂÐÅÌÅÍÈ ÊÀÊ ÑËÅÄÑÒÂÈÅ ÝÍÒÐÎÏÈÈ
ÏÐÎÑÒÐÀÍÑÒÂÀ ÄÅ ÑÈÒÒÅÐÀ

Ìû óòâåðæäàåì, ÷òî âñåëåííûå äå Ñèòòåðà ñ ìàëîé êîñìîëîãè÷åñêîé ïîñòîÿííîé äîëæíû, ïðèíèìàÿ âî âíèìà-
íèå ýíòðîïèþ, ïðåäïî÷òèòåëüíî èìåòü òðè ïðîñòðàíñòâåííûõ èçìåðåíèÿ. Ýòî çàêëþ÷åíèå îñíîâàíî íà ïðè÷èííî-
ñëåäñòâåííîì îïèñàíèè ïðîñòðàíñòâà äå Ñèòòåðà, â êîòîðîì ëîêàëüíûé íàáëþäàòåëü ôèêñèðóåò òåïëîâîå ðàâíî-
âåñèå âïëîòü äî ãîðèçîíòà, íà ãîëîãðàôè÷åñêîì ïðèíöèïå è íà íåêîòîðûõ ïðåäïîëîæåíèÿõ îòíîñèòåëüíî ïðèðîäû
ãðàâèòàöèè è èçëó÷åíèÿ Õîêèíãà/Óíðó.

Êëþ÷åâûå ñëîâà: ïðîñòðàíñòâî äå Ñèòòåðà, ýíòðîïèÿ, ïðîñòðàíñòâåííûå èçìåðåíèÿ.
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