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1 Introduction

It is well known that recently there has been found
strong evidence for an accelerate expansion of our
universe, apparently due to the so called dark energy.
With regard to this issue, here we would like to make
some considerations involving general relativistic
theories of gravitation. In fact, recently alternative and
geometric descriptions for the dark energy in modern
cosmology have been proposed and discussed in
several related issues [1,2]. Such models are higher
derivative gravitational theories, thus they may contain
instabilities [3] and deviation from Newton gravity [4].
However, if one takes quantum effects into account,
one can get a viable theory [5]. The Palatini method
has also been applied in consistent way [6,7,8] and the
evaluation of the black hole entropy within these
models has been investigated in [9].

To this aim, we shall consider a general relativistic
theories, (see for example [10,11]), namely let us
assume that our model s described by the action

F{R), (.0

with f(R) depending only on the scalar curvature.

As fi irst mmnp let us consider the Lagrangian [ 1]

. ] (1.2
where [L 1S a new cosmological parameter [1]. As i}s
well known |, there exist constant curvature de Sitter
and AdS vacuum solutions such that
R} =3u" (1.3
Another well known example, is given by the
choice
FRY=R+YR* = 2A,

where the the other possible quadratic term giving by
the Weyl invariant has been omitted because is
vanishing for space-time we are dealing with (see, for
example [10]).

As a third example, let us consider an effective
Coleman-Weinberg like model

fR)=R+ Rz{yﬁ»ﬁln[%}},
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(1.4)

(1.5)
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where 7y, B and u are suitable constants.

2 Minisuperspace approach

Cur aim in this section will be the issue of a
minisuperspace Lagrangian description, in order tc
investigate classical and quantum aspects, like the
stability and canonical quantization. For these reasons,
one has to restrict to FRW isotropic and homogeneous
metrics with constant spatial section. We choose a
spatial flat metric, namely

P (N () d R), 2.0
where 1 is the conformal time, () the cosmological
factor and N(n) an arbitrary lapse function, which
describes the gauge freedom associated with the
reparametrization invariance of the minisuperspace
gravitational model. For the above metric, the scalar
curvature reads

Ca" a'N

{
Re=b| mt B0

ER T 0
’\u a N )

" stands for — .
7

which

i one plugs this expression in the Hg. {1
obtains, an higher derivative Lagrangian theory.
ative  Lagrangian  theor may be
canonically by means the Ostrogadski method (see, for
example [12] and references cited therein).

Here we have found more convenient to follow the
method outlined in ref. [13]. To deal with a non
standard higher derivatives Lagragian system, we make
use of a Lagrangian multiplier A and we write

[

5 mjwzi—f dnNa* x
L6nG

a  aN'))
e no{ )

Making the variation with respect to R, one gets

(2.3)

PRCACSY (2.4)
dR
Thus, substituing this value and making a standard

integration by part, one arrives at the Lagrangian,
which will be our starting point
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2 gp ’ AT
L(a,a’,R,R’)zwﬁa df (R) __6‘7@1? d f_x’R)+
N 4R N dR® 25)
df (R) :
]\17 4 R R
(f( )-rLE )

It should be noted that N appears as “einbein”
Lagrangian multiplier, as it should be, reflecting the
parametrization invariance of the action. In fact the
Lagragian is quasi-invariant with respect to the
infinitesimal gauge transformation

da=¢e(1)a'(r), SR=€(DR'(1), ON= %[@S(T)N(t)].

(2.6)
As a consequence, we have the (energy) constraing
amé‘_ =0, (2.7
(}N
namely
£ \ ot 33 3
anr “ (2.8)

. ( FRy~ R»‘ifw%?—) =),

S dF(R) " dRad F(8)
N dR N dR*

The conserved quantity is the energy, computed
with the standard Legendre transformation

EQW“{’)‘;; d{j(f)_ﬁaaf? d* f(j{)w
( { df(R)};f " @10
~Na'| f(R)-R
a kj( Y- R- el

E is vanishing on shell due to the Eq. of motion for
the einbein N .

We shall be interested in models which admit
solution with constant 4-dimensional curvature of the
de Sitter type, namely

R=R,, AR, =12, (2.12)

Gy =,

If we plug this particular solutions in the above Hqs.
of motion, we get the condition [10]

2F(R)) =R, ~——= df (R) “(R,), (2.1%)

which may be ubed to find the constant curvature R, .

For the model defined by Eq. (1.2), Eq. (2.13) leads
again to the condition

R =3u%, (2.14)

while for the Lagrangian (1.4), Eq. (2.13) gives

R, =4A, (2.15)

and for the Coleman-Weinberg like model gives

R, =-}—, R, =0. (2.16)
5

ft is easy to check that such kind of solutions are
physically ones, because we have

E:_«?'é‘_i 1___ 2f(R())

4
Tk Lky |
dR

namely they satisfy identically the energy constraint
E =0 Thus, the condition (2.13) turns out 1o be a
necessary and sufficient condition in order to have
physical constant curvature solutions.

In order to investigate the Hamiltonian formalism,
it is convenient to make the following change of
variables {131 N >N, a—¢ and R— ¢, defined

2.17)

Oy
df (R) ,
ixm,’w;“ = Blete (2.18)
dR
a = ge (2.19)
In the first, B is a suitable constant, {ixed by means
AF LRy
B =R, v
dR
and R, as a fupction of the new variable ¢, iy det

implicitely R = R{{).

For example, for the choice (1.2), one has
m[ :\P) gi -
ARy b e B (2.21
dRr ) R* )
and
p ‘
(Bugwc) - }4}1/"
For the Lagrangian (1.4), one obtains
2,26
=81 2.23)

2y
In the case of Coleman-Weinberg like model, one
only has

Bl =14 2,R£y+ Bln——R;] +PBR. (2.24)
H

Thus, it is not possibile to obtain explicetily R as a
function of the new variable ¢.

The de Sitter like solution corresponds to

0, =0, ¢q zf‘-, 'R, =12. (2.25)
n
A direct calculation leads to Lagrangian
6 R Ea I
L=210g-¢Y " -¢"1-NV(9.9), (2.26)
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in which the potential reads
V(9. = _.-..w«'v Ry -rER df (R) <¢)} @227)

For axample, fox the Lagrangxan (1.2), we have (see
aiso{1,2,3D)

4
V(d,g)= {Bz R | (2.28)
while for the Lagrangian (1.4), one obtains
o0 (B -1)"
V{b,g) =~ 2A A A— (2.29)
4y
The conserved energy reads
6 DNT P 2 #
E':v}~\7[(2q“q‘)“¢>2 -q [+ NV(¢.9), (2.30)

and it is vanishing on shell.
Hamiltonian is

The corresponding

H=N ——-ML—»—WP ——}—'PZ + Vg, ti)1
24(2g ~ %) 24 ¢ J
The Lagrangian equation of motion, in the gauge
N =1, read

g ~1-g)" +

(230

ARG

3 wd@ o ls]
q.¢ df(R) ' (2.32)
R R -0,
=R
(29~ é]}“df +20q" —qq" ¥ ~
g If(R) ] 2.33)
PRACY) | =0. (2.53)

ar |

It the Lagrangian s

I

Y40 x.mm that the

isfies the condition (2.13), it is
one has again the de Sitter

W«:‘
equations for the small disturbances around the de
Sitter solution, namely

um,iuz‘%w this  Section writing down the

§ = 5. (2.34)
Taking Eq. (2.13) into account again, the equations

for the small disturbance around de Sitter solution turn
out to be

g =g, +8g,

d ?q “w(_);‘aq:o’ (235)
0
e o,
n)dn m_ m,dn
5{ (2.36)
4R, 2l 1- 2L 1oy o
W l R? d-f,
] %
d°R,

Some remarks are in order. First the small
disturbance equations are decoupled in the conformal
time. Second, the equation associated with the variable

g is universal, namely it does not depend explicitely

on function f(R). but we remind that the constant

value K, depends on it. Third, the general solution of

the first equation is not hard to find and reads

8g=cm’ + czn"2 {237
However, the perturbed solution ¢ =g, +8¢ must

satisfy the energy constraint £ =0 and this leads to

DE =0, (2.38)
namely, around the de Sitter solution
gy&q — gidg = 0. (2.39)
As aresult ¢, =0 and we have
g== [ “%5% ] (2.40)
i An

Recall that the relation between the conformal time
and the co*;mom zical time 7 may be written
and 124 =

t =0 corresponds 10 1.
L
=1 0‘5"‘& R
12A=R},
t =0 corresponds to 1, .

R, R, being the de Sitter curvature and

{(2.41)

and R, being the de Sitter curvature and

Thus, the solution remains small with r the de

espect
Sitter one for

R, being the de Sitler curvature.

Along the same one may investigate
Starobinski model {14] and its generalization |
the Brans-Dicke field [I5] and its brane-w
generalization [16].

3 Conclusions

In this paper, we have presented a minisuperspace
approach for general relativistic pure gravitational
models. The inclusion of the matter can be easily taken
into account. A canonical approach has been presented
by means of the methods of ref. [13]. These models
are, in general, instable, due to the presence, ai the
beginning, of higher derivative terms [3). However, the
inclusion of quantum effects may resolve the problem
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A, can be considered as the bare cosrmological

+ 8.

v, we know that the effective energy

A an artempt 4o

density of the universe p,, is of the order

wons.The A erude estimate of the Zero Point Bne
some field ol mass m with a cutof at the P

(1 Sives
(L) &

R e v B b A e e 0
Ko =58 R+ A g, =8nGT,,
A—-

: ‘ ] 1 &k rEyy
where A, is the cosmological constant, G is the Czve = “‘i ‘”""‘)‘“”'\k o

gravitational constant and 1,, is the energy-momentum Al &
tensor. By redefining vigf-; =~ 107 GeV",
ot AL "
!,P:f,’ =T, - — ——g., (2 This gives a difference of about 118 orders [1]. The
T . . . . approach to quantization of general relativity based on
one can regain the original form of the field equations the following set of equations
i
Ry == 8, R=8nGT) =8nG (T 4y, 3 2% i [o
7o w ¥ T ®) -—««-Gwn“nk’ --—V—g—(R-2AC) Yig,1=0 (8)
at the prize of introducing a vacuum energy density \/g 2K
and vacuum stress-energy tensor and
T - i =
pA MWW(—: IJV = p/\(“) pve (4) QV T qj{blj} O, (g)

Alternatively, Eq. (1) can be cast inio the form, where R is the three-scalar curvature, A_ is the bare

; i , cosmological constant and x=8xG, is known as
Ra =38R+ Ay =0, (5)  Wheeler-De Witt equation (WDW) [2]. Egs. (8) and

o . o (9) describe the wave function of the universe. The
where we have included the contribution of the vacuum  WpW equation represents invariance under time

energy density in the form 7,, =—~(p)g,, . In this case  reparametrization in an operatorial form, while Eq. (9)
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