Landau models with both worldline and target supersymmetries: $\mathcal{N} = 2$ and $\mathcal{N} = 4$ examples

E. Ivanov

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia.

E-mail: eivanov@theor.jinr.ru

We present a synopsis of superextended Landau models possessing both worldline supersymmetry and graded internal symmetry acting in the target space. The main focus is on the recently constructed model with the worldline $\mathcal{N} = 4$ supersymmetry and the target ISU(2|2) symmetry.

Keywords: supersymmetry, Landau levels, superspace.

1 Introduction

The original quantum Landau model [1] describes a charged particle moving on a plane orthogonal to a constant uniform magnetic flux. Its generalization is the spherical Landau-type model [2] which describes a charged particle on the 2-sphere $S^2 \sim SU(2)/U(1)$ in the Dirac monopole background.

Superextensions of the Landau and Haldane models deal with non-relativistic particles moving on supergroup manifolds with S^2 or its planar limit as a "body". Minimal superextensions of the S^2 Haldane model are:

1. Landau problem on the (2 + 2)-dimensional supersphere SU(2|1)/U(1|1) [3,4];

2. Landau problem on the (2+4)-dimensional superflag $SU(2|1)/[U(1) \times U(1)]$ [4,5].

Their large S^2 radius limits yield planar super Landau models [6–9]. Most surprising feature of the super planar Landau problems is the hidden world-line $\mathcal{N} = 2$ supersymmetry. Thus, the super planar Landau models simultaneously provide a class of supersymmetric quantum mechanics (SQM) models. SQM models [10] have a plenty of applications in diverse domains.

A natural approach to constructing super planar Landau models is as follows. One takes the notion of the world-line $\mathcal{N} = 2$ SUSY as the primary one and reproduces the planar Landau model and its most general $\mathcal{N} = 2$ supersymmetric version from a worldline superfield formalism [9,11]. Recently, this "bottom-up" approach was applied for constructing the first example of super Landau model with the worldline $\mathcal{N} = 4$ supersymmetry [12]. We found the target space supersymmetry ISU(2|2) as a natural generalization of the ISU(1|1) symmetry of the $\mathcal{N} = 2$ case. The present talk is devoted to a short account of this construction, with collecting, as a prerequisite, some salient facts about the ordinary and $\mathcal{N} = 2$ supersymmetric Landau models.

Note that sigma models with the supergroup target spaces received much attention for the last years, in particular, in connection with superbranes (see, e.g., [13–15]).

2 Bosonic Landau models

The Lagrangian and Hamiltonian of the planar bosonic Landau model are given by the following expressions

$$L_b = |\dot{z}|^2 - i\kappa \left(\dot{z}\bar{z} - \dot{\bar{z}}z \right) = |\dot{z}|^2 + \left(A_z \dot{z} + A_{\bar{z}} \dot{\bar{z}} \right) \,, \tag{1}$$

where

 $A_z = -i\kappa \bar{z}, A_{\bar{z}} = i\kappa z, \partial_{\bar{z}} A_z - \partial_z A_{\bar{z}} = -2i\kappa \ ,$ and

$$H_b = \frac{1}{2} \left(a^{\dagger} a + a a^{\dagger} \right) = a^{\dagger} a + \kappa , \qquad (2)$$

where

$$a = i(\partial_{\bar{z}} + \kappa z), \quad a^{\dagger} = i(\partial_{z} - \kappa \bar{z}), \quad [a, a^{\dagger}] = 2\kappa.$$

The invariances of the model are the "magnetic translations" and 2D rotations generated by

$$P_z = -i(\partial_z + \kappa \bar{z}), P_{\bar{z}} = -i(\partial_{\bar{z}} - \kappa z), F_b = z\partial_z - \bar{z}\partial_{\bar{z}},$$

$$[P_z, P_{\bar{z}}] = 2\kappa, \ [H, P_z] = [H, P_{\bar{z}}] = [H, F_b] = 0.$$

The n-th Landau level (LL) wave function is defined as

$$\Psi_{(n)}(z,\bar{z}) = [i(\partial_z - \kappa \bar{z})]^n e^{-\kappa |z|^2} \psi_{(n)}(z), H\Psi_{(n)} = \kappa (2n+1) \Psi_{(n)}.$$

Each LL is infinitely degenerate due to $(P_z, P_{\bar{z}})$ invariance.

The S^2 generalization of the planar Landau model is defined by the following SU(2) invariant Lagrangian

$$L_b = \frac{1}{(1+|z|^2)^2} |\dot{z}|^2 + is \frac{1}{1+|z|^2} \left(\dot{z}\bar{z} - \dot{\bar{z}}z \right), \tag{3}$$

where the 2nd term is the d = 1 Wess-Zumino term on the coset $SU(2)/U(1) \sim S^2$.

The relevant wave functions are finite-dimensional SU(2) irreps, $s, s+1, s+2, \ldots s+\ell$ being their "spins". The energy spectrum is determined by the formula

$$E_{\ell} = \ell(2s + \ell + 1) + 2s, \quad \ell = 0, 1, 2, \dots$$
(4)

Each LL is finitely degenerated since wave functions are SU(2) irreps. Redefining $z \to r z$, $H \to H r^2$, $sr^2 = \kappa$, where r is the "inverse" radius of S^2 , in the limit $r \to 0$, with κ fixed, one recovers the planar Landau model.

3 Planar super Landau models

Planar super Landau models are the large radius limits of the supersphere and superflag Landau models. In this limit, the supersphere SU(2|1)/U(1|1) goes into an (2 + 2)-dim. superplane.

The Lagrangian and Hamiltonian of the superplane Landau model read:

$$L = L_f + L_b = |\dot{z}|^2 + \dot{\zeta}\dot{\bar{\zeta}} - i\kappa\left(\dot{z}\bar{z} - \dot{\bar{z}}z + \dot{\zeta}\bar{\zeta} + \dot{\bar{\zeta}}\zeta\right)$$
$$H = a^{\dagger}a - \alpha^{\dagger}\alpha = \partial_{\bar{\zeta}}\partial_{\zeta} - \partial_{z}\partial_{\bar{z}}$$
$$+ \kappa\left(\bar{z}\partial_{\bar{z}} + \bar{\zeta}\partial_{\bar{\zeta}} - z\partial_{z} - \zeta\partial_{\zeta}\right) + \kappa^{2}\left(z\bar{z} + \zeta\bar{\zeta}\right).$$

The invariances are generated by $P_z, P_{\bar{z}}, \Pi_{\zeta} = \partial_{\zeta} + \kappa \bar{\zeta}, \Pi_{\bar{\zeta}} = \partial_{\bar{\zeta}} + \kappa \zeta$ and the new generators

$$Q = z\partial_{\zeta} - \bar{\zeta}\partial_{\bar{z}} , Q^{\dagger} = \bar{z}\partial_{\bar{\zeta}} + \zeta\partial_{z} ,$$

$$C = z\partial_{z} + \zeta\partial_{\zeta} - \bar{z}\partial_{\bar{z}} - \bar{\zeta}\partial_{\bar{\zeta}} .$$
(5)

They form the algebra of the supergroup ISU(1|1), contraction of SU(2|1):

$$\{Q, Q^{\dagger}\} = C, \ [Q, P] = i\Pi, \ \{Q^{\dagger}, \Pi\} = iP.$$
 (6)

The natural ISU(1|1)-invariant inner product

$$<\phi|\psi>=\int d\mu \ \overline{\phi\left(z,\overline{z};\zeta,\overline{\zeta}
ight)}\psi\left(z,\overline{z};\zeta,\overline{\zeta}
ight), \ d\mu=d^{2}zd^{2}\zeta,$$

leads to negative norms for some component wave functions. All norms can be made positive by introducing the "metric" operator:

$$G = \frac{1}{\kappa} \left[\partial_{\zeta} \partial_{\bar{\zeta}} + \kappa^2 \bar{\zeta} \zeta + \kappa \left(\zeta \partial_{\zeta} - \bar{\zeta} \partial_{\bar{\zeta}} \right) \right],$$

$$<< \phi |\psi>> \sim \int d\mu \ \overline{(G\phi)} \psi.$$

Note that H commutes with G, so $H = H^{\dagger} = H^{\ddagger}$. However, the hermitian conjugation properties of the operators which *do not commute* with G, change. Let \mathcal{O} be a symmetry generator, such that $[H, \mathcal{O}] = 0$. Then

$$\mathcal{O}^{\ddagger} \equiv G \mathcal{O}^{\dagger} G = \mathcal{O}^{\dagger} + G \mathcal{O}_{G}^{\dagger}, \ \mathcal{O}_{G} \equiv [G, \mathcal{O}],$$

and O_G is another operator such that $[H, \mathcal{O}_G] = 0$. The symmetry generators that do not commute with G thus generate, in general, additional "hidden" symmetries.

In our case G commutes with all ISU(1|1) generators, except Q, Q^{\dagger} , hence

$$Q^{\ddagger} = Q^{\dagger} - \frac{i}{\kappa} S, \ S = i \left(\partial_z \partial_{\bar{\zeta}} + \kappa^2 \bar{z} \zeta - \kappa \bar{z} \partial_{\bar{\zeta}} - \kappa \zeta \partial_z \right),$$

$$S = a^{\dagger} \alpha, \ S^{\ddagger} = a \alpha^{\ddagger}.$$

The operators S, S^{\ddagger}, H form $\mathcal{N} = 2, d = 1$ superalgebra

$$\{S, S^{\ddagger}\} = 2\kappa H, \quad \{S, S\} = \{S^{\ddagger}, S^{\ddagger}\} = 0,$$

 $[H, S] = [H, S^{\ddagger}] = 0.$

The LLL ground state is annihilated by S and S^{\ddagger} :

$$S\psi^{(0)} = S^{\ddagger}\psi^{(0)} = 0,$$

and so it is $\mathcal{N} = 2$ SUSY singlet. Hence $\mathcal{N} = 2$ SUSY is unbroken and all higher LL form its irreps.

4 $\mathcal{N} = 2$ superfield formulation

One can recover the planar super Landau model from another end, just taking the manifest $\mathcal{N} = 2$ worldline supersymmetry as an input [9].

The starting point is $\mathcal{N}=2$, d=1 superspace in the left-chiral basis, $(\theta, \bar{\theta}, \tau \equiv t + i\theta\bar{\theta})$. The basic objects are $\mathcal{N}=2$, d=1 chiral bosonic and fermionic superfields $\Phi = z(\tau) + \theta\chi(\tau)$, $\Psi = \bar{\zeta}(\tau) + \theta h(\tau)$, with $\chi(\tau)$ and $h(\tau)$ being auxiliary fields. The superfield action yielding the superplane model action is:

$$S = -\kappa \int dt d^2\theta \left\{ \Phi \bar{\Phi} + \Psi \bar{\Psi} + \rho \left[\Phi D \Psi - \bar{\Phi} \bar{D} \bar{\Psi} \right] \right\} \,,$$

where $\rho = 1/(2\sqrt{\kappa}), \kappa \neq 0$. On shell, the fields h and χ are expressed as $\chi = i/\sqrt{\kappa} \dot{\zeta}$, $h = i/\sqrt{\kappa} \dot{z}$. In terms of physical fields:

$$\Rightarrow \int dt \Big[i\kappa \left(z\dot{\bar{z}} - \bar{z}\dot{z} + \zeta\dot{\bar{\zeta}} - \dot{\zeta}\bar{\zeta} \right) + \left(\dot{z}\dot{\bar{z}} + \dot{\zeta}\dot{\bar{\zeta}} \right) \Big].$$

This approach triggered the idea [11] to construct generalized $\mathcal{N} = 2$ Landau models by passing to the most general $\mathcal{N} = 2$ superfield action:

$$S_{gen} = \int dt d^2 \theta \Big[K(\Phi, \bar{\Phi}) + V(\Phi, \bar{\Phi}) \Psi \bar{\Psi} \\ + \rho \left(\Phi D \Psi - \bar{\Phi} \bar{D} \bar{\Psi} \right) \Big] = \int dt \mathcal{L} \,. \tag{7}$$

This action involves two independent superfield potentials, $K(\Phi, \overline{\Phi}), V(\Phi, \overline{\Phi})$. Eliminating auxiliary fields in $\Phi = z + \dots, \Psi = \psi + \dots$, one gets

$$\mathcal{L}_{comp} = V^{-1} \dot{z} \dot{z} + i \left(\dot{z} K_z - \dot{z} K_{\bar{z}} \right) + \left(\psi - \text{terms} \right).$$
(8)

The superpotential V defines a target metric, while K produces a background super gauge field.

-71 -

S

5 $\mathcal{N} = 4$ superfield action

 $\mathcal{N} = 4$ counterpart of the $\mathcal{N} = 2$ Landau model action is written in *bi-harmonic* superspace (bi-HSS) [16]:

$$S_{N=4} = -\frac{i\kappa}{2} \left(\int \mu^{-2,0} q^{(1,0)A} q^{(1,0)B} C_{AB} - i \int \mu^{0,-2} \psi^{(0,1)A} \psi^{(0,1)B} \epsilon_{AB} + \frac{1}{\sqrt{\kappa}} \int \mu^{-2,0} q^{(1,0)A} D^{1,-1} \psi^{(0,1)B} \epsilon_{AB} \right).$$
(9)

It involves two bi-harmonic superfields, $q^{(1,0)A}$ and $\psi^{(0,1)B}$, which live on two different analytic subspaces of the $\mathcal{N} = 4, d = 1$ bi-HSS. Without entering into details, the superfields $q^{(1,0)A}$, $\psi^{(0,1)B}$ amount to the following sets of the off-shell components:

$$q^{(1,0)A} \Rightarrow (f^{iA}, \psi^{aA}(t)), \psi^{0,1A} \Rightarrow (\chi^{aA}(t), h^{iA}(t)).$$

The fields (f^{iA}, χ^{aA}) are physical, while (ψ^{aA}, h^{iA}) are auxiliary. The off-shell component lagrangian reads:

$$L \propto (2i\dot{f}^{iA}f_i^B - \psi^{aA}\psi_a^B)C_{AB} + (2\dot{\chi}^{aA}\chi_a^B - ih^{iA}h_i^B)\epsilon_{AB} - \frac{2i}{\sqrt{\kappa}}(\dot{f}^{iA}h_i^B + \psi^{aA}\dot{\chi}_a^B)\epsilon_{AB}.$$
(10)

After eliminating auxiliary fields as $h_{iA} = -\frac{1}{\sqrt{\kappa}} \dot{f}_{iA}$, $\psi_{aA} = \frac{i}{\sqrt{\kappa}} C_{AB} \dot{\chi}_a^B$, one obtains

$$L = \kappa C_{AB} \dot{f}^{iA} f^B_i - i\kappa \dot{\chi}^{aA} \chi_{aA} + \frac{1}{2} \left(\dot{f}^{iA} \dot{f}_{iA} + iC_{AB} \dot{\chi}^{aA} \dot{\chi}^B_a \right).$$
(11)

The Lagrangian (11) involves the Lorentz force-type coupling to the external gauge field:

$$\mathcal{A}_{iB}\dot{f}^{iB}, \quad \mathcal{A}_{iB} = -\kappa C_B^{\ \ D} f_{iD}.$$

This field is self-dual:

$$\mathcal{F}_{iA\,jB} := \partial_{iA}\mathcal{A}_{jB} - \partial_{jB}\mathcal{A}_{iA} = -2\kappa C_{AB}\epsilon_{ij} \,.$$

The bosonic sector of (11) corresponds to the model used in [17] to describe U(1) quantum Hall effect on \mathbb{R}^4 .

6 Symmetries of $\mathcal{N} = 4$ model

The action (11) respects $\mathcal{N} = 4$ supersymmetry:

$$\delta f^{iA} = -\frac{i}{\sqrt{\kappa}} \epsilon^{ia} C^{AB} \dot{\chi}_{aB}, \quad \delta \chi^{aA} = -\frac{1}{\sqrt{\kappa}} \epsilon^{ia} \dot{f}_i^A,$$

where ϵ^{ia} are four Grassmann parameters. The corresponding conserved Noether supercharge is

$$S_{ia} = -\frac{i}{\sqrt{\kappa}} C^{AB} \dot{\chi}_{aA} \dot{f}_{iB}$$

After quantization it becomes the generator of $\mathcal{N} = 4$ supersymmetry

Besides the worldline supersymmetry the action respects "internal" supersymmetry which is realized by differential operators in the target (4 + 4) superspace (f^{iA}, χ^{aB}) . Their set involves:

A. "Magnetic" supertranslations:

$$P_{iA} = -i\partial_{f^{iA}} + \kappa C_{AB}f_i^B, \ \Pi_{aA} = \partial_{\chi^{aA}} + \kappa \chi_{aA}, [P_{iA}, P_{jB}] = 2\kappa\epsilon_{ij}C_{AB}, \ \{\Pi_{aA}, \Pi_{bB}\} = 2\kappa\epsilon_{ab}\epsilon_{AB}.$$

B. Superrotations:

$$\begin{split} Q^{ia} &= \frac{1}{2} (iC_B^A - \delta_B^A) \chi^{aB} \partial_{f_i^A} + \frac{1}{2} (iC_B^A + \delta_B^A) f^{iB} \partial_{\chi_a^A} \\ \{Q^{ia}, \bar{Q}_{jb}\} &= \delta_b^a T^{(i}{}_{j)} - \delta_j^i T^{(a}{}_{b)} + \frac{1}{2} i \delta_j^i \delta_b^a Z, \\ \{Q^{ia}, Q^{jb}\} &= 0. \end{split}$$

Here, $Z = C_B^A(f^{iB}\partial_{f^{iA}} + \chi^{aB}\partial_{\chi^{aA}})$ is U(1) generator, $T^i_{\ k}, T^a_{\ b}$ are generators of two automorphism SU(2) groups acting on the doublet indices *i* and *a*.

The fifteen generators $Q^{ia}, \bar{Q}^{jb}, T^i_{\ k}, T^a_{\ b}, Z$ form the superalgebra su(2|2), a graded version of su(4). The full target space superalgebra is

$$(P_{iA}, \Pi_{aA}) \rtimes SU(2|2) = ISU(2|2).$$

It is a natural generalization of the target ISU(1|1) symmetry of the $\mathcal{N} = 2$ super Landau model.

7 Quantization

We use the complex fields:

$$\begin{split} z &= f^{11}, u = f^{21}, \zeta = \chi^{11}, \xi = \chi^{21}, \text{and c.c.} \\ L &= |\dot{z}|^2 + |\dot{u}|^2 - i\kappa(\dot{z}\bar{z} - \dot{\bar{z}}z + \dot{u}\bar{u} - \dot{\bar{u}}u) \\ &+ \dot{\zeta}\dot{\bar{\zeta}} + \dot{\xi}\dot{\bar{\xi}} - i\kappa(\dot{\zeta}\bar{\zeta} + \dot{\bar{\zeta}}\zeta + \dot{\bar{\xi}}\bar{\xi} + \dot{\bar{\xi}}\bar{\xi}). \end{split}$$

The quantum Hamiltonian reads

$$\begin{split} H_q &= a_z^{\dagger} a_z + a_u^{\dagger} a_u - \alpha_{\zeta}^{\dagger} \alpha_{\zeta} - \alpha_{\xi}^{\dagger} \alpha_{\xi} \,. \\ a_z &= i (\frac{\partial}{\partial \bar{z}} + \kappa z) \,, a_u = i (\frac{\partial}{\partial \bar{u}} + \kappa u) \,, \\ \alpha_{\zeta} &= \frac{\partial}{\partial \bar{\zeta}} - \kappa \zeta \,, \ \alpha_{\xi} = \frac{\partial}{\partial \bar{\xi}} - \kappa \xi \\ [a_z, a_z^{\dagger}] &= [a_u, a_u^{\dagger}] = 2\kappa , \\ \{\alpha_{\zeta}, \alpha_{\zeta}^{\dagger}\} &= \{\alpha_{\xi}, \alpha_{\xi}^{\dagger}\} = -2\kappa . \end{split}$$

The $\mathcal{N} = 4$ supercharges read:

$$S^{11} := S_2 = \frac{i}{\sqrt{\kappa}} (\alpha_{\xi}^{\dagger} a_z - a_u^{\dagger} \alpha_{\zeta}),$$

$$S^{21} := S_1 = \frac{i}{\sqrt{\kappa}} (\alpha_{\xi}^{\dagger} a_u + a_z^{\dagger} \alpha_{\zeta}),$$

$$\{S_1, S_1^{\dagger}\} = \{S_2, S_2^{\dagger}\} = -2H_q$$

-72 -

(the sign will change after redefining the inner product). In the covariant notation:

$$\{S^{ia}, S^{jb}\} = 2\epsilon^{ij}\epsilon^{ab}H_q.$$

For S^{ia} and H_q there exists a Sugawara representation

$$\begin{split} S^{ia} &= 2\sqrt{\kappa}(Q^{ia} + \bar{Q}^{ia}) - \frac{i}{\sqrt{\kappa}}P^i_A\Pi^{aA}, \\ H &= \frac{1}{2}P^{iA}P_{iA} + \frac{i}{2}C^{AB}\,\Pi^a_B\Pi_{aA} + 2\kappa iZ \end{split}$$

One can also define one more $\mathcal{N} = 4$ supersymmetry

$$\begin{split} \hat{S}^{ia} &= 2i\sqrt{\kappa}(Q^{ia} - \bar{Q}^{ia}) + \frac{i}{\sqrt{\kappa}}P^i_A\Pi^a_B C^{AB} \\ \{\hat{S}^{ia}, \hat{S}^{jb}\} &= 2\epsilon^{ij}\epsilon^{ab}H_q. \end{split}$$

The closure of the two $\mathcal{N} = 4$ superalgebras is the worldline su(2|2):

$$\{S^{ia}, \hat{S}^{jb}\} = 8i\kappa \left(\epsilon^{ab}\hat{T}^{ij} - \epsilon^{ij}\hat{T}^{ab}\right),\tag{12}$$

 \hat{T}^{ij} and \hat{T}^{ab} being the *R*-symmetry SU(2) generators. The wave functions are defined as follows:

A. The lowest Landau level (LLL), $H\Psi^0 = 0$:

$$\begin{split} \Psi^{0} &= e^{-\kappa K} \psi_{0}, \quad K = |z|^{2} + |u|^{2} + \zeta \bar{\zeta} + \xi \bar{\xi}, \\ \psi_{0}(z, u, \zeta, \xi) &= A^{0}(z, u) + \zeta B^{0}(z, u) \\ &+ \xi C^{0}(z, u) + \zeta \xi D^{0}(z, u) \,. \end{split}$$

The LLL wave function has a four-fold degeneracy: A^0, B^0, C^0, D^0 are closed under ISU(2|2). It is a singlet of $\mathcal{N} = 4$ supersymmetry.

B. Next LLs, $H\Psi^{(N)} = 2\kappa N\Psi^{(N)}$, with N > 0.

Introducing the SU(2) covariant notation $a^i \equiv (a_z \ a_u), ; \alpha^a \equiv (\alpha_\zeta \ \alpha_\xi), ; [a_i^{\dagger}, a^j] = 2\kappa \delta_i^j, \ \{\alpha_a^{\dagger}, \alpha^b\} = 2\kappa \delta_a^b$, the wave function $\Psi^{(N)}$ can be constructed as

$$\Psi^{(N)} = a^{\dagger}_{(i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_N}) e^{-\kappa K} \phi^{(i_1 i_2 \dots i_N)}(z, u, \zeta, \xi) + \alpha^{\dagger}_a a^{\dagger}_{(i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_{N-1})} e^{-\kappa K} \psi^{a(i_1 i_2 \dots i_{N-1})}(z, u, \zeta, \xi) + (\alpha^{\dagger})^2 a^{\dagger}_{(i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_{N-2})} e^{-\kappa K} \phi^{(i_1 i_2 \dots i_{N-2})}.(z, u, \zeta, \xi)$$

The component wave functions form irreps of the worldline $\mathcal{N} = 4$. The $\mathcal{N} = 4$ supermultiplet for N-th level collects the SU(2) spins

$$\left(s_1 = \frac{N}{2}, \quad s_2 = \frac{N-1}{2}, s_3 = \frac{N-2}{2}\right).$$
 (13)

The degeneracy of the N-th level is

$$4[(2s_1+1)+2(2s_2+1)+(2s_3+1)] = 16N.$$
(14)

Like in other super Landau models, with the standard definition of the inner product

$$\langle \phi | \psi \rangle = \int d\mu \overline{\phi(f,\chi)} \psi(f,\chi), \, d\mu = d^4 f d^4 \chi$$

there are negative norms. Let $\Psi_{(l,m)}$, l,m = 0,1 be a wave function with one or two fermionic quanta α_{ζ}^{\dagger} and $\alpha_{\varepsilon}^{\dagger}$. Then

$$\begin{split} \langle \Psi_{(l,m)} | \Psi_{(l,m)} \rangle &\sim (-1)^{l+m} (||D_{(l,m)}||^2 + 2\kappa ||B_{(l,m)}||^2 \\ &+ 2\kappa ||C_{(l,m)}||^2 + 2\kappa^2 ||A_{(l,m)}||^2), \\ ||f||^2 &:= \int dz d\bar{z} du d\bar{u} e^{-2\kappa |z|^2 - 2\kappa |u|^2} \overline{f(z,u)} f(z,u) \,. \end{split}$$

The states with $\Psi_{(1,0)}$ and $\Psi_{(0,1)}$ have negative norm.

To cure this, one redefines the inner product as in the $\mathcal{N}=2$ case

$$\begin{split} \langle \langle \psi | \phi \rangle \rangle &:= \langle G \psi | \phi \rangle, \\ G &= (1 - 2n_{\zeta})(1 - 2n_{\xi}), \, n_{\zeta,\xi} := \frac{\alpha_{\zeta,\xi}^{\dagger} \, \alpha_{\zeta,\xi}}{2\kappa} \end{split}$$

The metric operator G possesses the standard properties

$$[H_q, G] = 0, \quad G^2 = 1$$

With the new definition of the hermitian conjugation, H_q becomes manifestly positive-definite:

$$H = a_z^{\dagger} a_z + a_u^{\dagger} a_u + \alpha_{\zeta}^{\ddagger} \alpha_{\zeta} + \alpha_{\xi}^{\ddagger} \alpha_{\xi} \,.$$

8 Generalized $\mathcal{N} = 4$ models

Most general $\mathcal{N}=4$ supersymmetric action of the superfields $q^{(1,0)A}$ and $\psi^{(0,1)A}$ is

$$S_{gen} = \frac{\kappa}{2i} \Big(\int \mu^{-2,0} L^{2,0}(q^{(1,0)A}, u, v) - i \int \mu^{0,-2} \psi^{(0,1)A} \psi^{(0,1)B} \epsilon_{AB} + \frac{1}{\sqrt{\kappa}} \int \mu^{-2,0} q^{(1,0)A} D^{1,-1} \psi^{(0,1)B} \epsilon_{AB} \Big),$$

where $L^{2,0}$ is an arbitrary function of its arguments. After going to components and eliminating auxiliary fields one obtains the on-shell Lagrangian

$$L = \dot{f}^{iA} \mathcal{A}_{iA} - i\kappa \dot{\chi}^{aA} \chi_{aA} + \frac{1}{2} \dot{f}^{iA} \dot{f}_{iA} + i \frac{\kappa}{2} (G^{-1})_{AB} \dot{\chi}^{aA} \dot{\chi}^{B}_{a}.$$

Here

$$\begin{split} \mathcal{A}_{iA}(f) &= -\kappa \int du dv \, u_i^{-1} \frac{\partial L^{2,0}}{\partial f^{(1,0)A}} \,, \\ G_{AB}(f) &= \frac{\kappa}{2} \int du dv \, \frac{\partial^2 L^{2,0}}{\partial f^{(1,0)A} \partial f^{(1,0)B}} \,. \end{split}$$

The external gauge field $\mathcal{A}_{iA}(f)$ by construction is selfdual on \mathbb{R}^4 ,

$$\mathcal{F}_{iBjA} := \partial_{iB} \mathcal{A}_{jA} - \partial_{jA} \mathcal{A}_{iB} = -2G_{AB}\epsilon_{ij} \,.$$

-73 -

In the bosonic sector we obtain some generalization of the Elvang, Polchinski U(1) model in \mathbb{R}^4 , with an arbitrary self-dual external gauge field. All other terms in the Lagrangian can be brought to the same form as in the original $\mathcal{N} = 4$ super Landau model. How to obtain non-trivial target metric as in the general $\mathcal{N} = 2$ Landau model? This is an open question. Perhaps one should make use of some nonlinear versions of the off-shell $\mathcal{N} = 4$ multiplets involved [18].

9 Outlook

Among possible physical applications of the super Landau models outlined here (including the new $\mathcal{N} = 4$ model), as well as the problems for the further study, we would like to distinguish the following ones.

These models might constitute a basis of possible supersymmetric versions of the Quantum Hall Effect (QHE) in diverse dimensions. For instance, as follows from our consideration, QHE on \mathbb{R}^4 [17] could have a natural $\mathcal{N} = 4$ superextension described by the $\mathcal{N} = 4$ Landau model. Also, we expect a close relation of the models considered to integrable structures in the planar $\mathcal{N} = 4, d = 4$ SYM theory and string theory. Indeed, the integrable su(2|2) and su(3|2) spin chains play an important role in these theories [19, 20], and it would be hardly accidental that the supergroups of similar type appear as the target space symmetries in the quantum-mechanical super Landau models. In this context, it is of clear interest to construct and study curved analogs of the $\mathcal{N} = 4$ Landau model based, e.g., on the supercoset $SU(3|2)/U(2|2) \sim \mathbb{C}^{(2|2)}$. Our planar model should be reproduced from such a curved system in the contraction limit $R \to \infty$. The SU(3|2)system can be treated as a superextension of one of the SU(3)/U(2) models studied in [21] in connection with the four-dimensional QHE.

It is interesting to generalize our consideration to higher \mathcal{N} worldline supersymmetries (e.g. $\mathcal{N} = 8$) and to construct alternative $\mathcal{N} = 4$ super Landau models based on other known off-shell $\mathcal{N} = 4, d = 1$ multiplets, e.g. $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ and $(\mathbf{2}, \mathbf{4}, \mathbf{2})$. The supersymmetric Landau-type models with couplings to external nonabelian gauge fields (introduced by methods of ref. [22]) also present an ambitious subject for the future investigations.

Acknowledgement

The author thanks the Organizers of the Tomsk Conference QFTG'2012 for inviting him to present this talk. This research was supported by the RFBR grants Nr. 12-02-00517 and Nr. 11-02-90445.

References

- [1] Landau L. 1930 Z. Phys. 64 629
- [2] Haldane F. D. M. 1983 Phys. Rev. Lett. 51 605
- [3] Ivanov E. et al 2003 Fuzzy $CP^{(n|m)}$ as a quantum superspace [arXiv:hep-th/0311159]
- [4] Beylin A. et al 2008 JHEP 0810 069 [arXiv:0806.4716 [hep-th]]
- [5] Ivanov E. et al 2004 A Super-Flag Landau model [arXiv:hep-th/0404108]
- [6] Hasebe K. 2005 Phys. Rev. D 72 105017 [arXiv:hep-th/0503162]
- [7] Ivanov E. et al 2006 JHEP 0601 143 [arXiv:hep-th/0510019]
- [8] Curtright T. et al 2007 JHEP 0704 020 [arXiv:hep-th/0612300]
- [9] Ivanov E. 2008 Theor. Math. Phys. 154 349 [arXiv:0705.2249 [hep-th]]
- [10] Witten E. 1981 Nucl. Phys. B 188 513
- [11] Beylin A. et al 2010 JHEP 1004 091 [arXiv:1003.0218 [hep-th]]
- [12] Bychkov V. and Ivanov E. 2012 Nucl. Phys. B 863 33 [arXiv:1202.4984 [hep-th]]
- [13] Metsaev R. A. and Tseytlin A. A. 1998 Nucl. Phys. B 533 018 [arXiv:hep-th/9805028]
- [14] Mitev V. et al 2008 JHEP 0811 086 [arXiv:0809.1046 [hep-th]]
- [15] Hollowood T. J. and Miramontes J. L. 2011 JHEP 1105 136 [arXiv:1104.2429 [hep-th]]
- [16] Ivanov E. and Niederle J. 2009 Phys. Rev. D 80 065027 [arXiv:0905.3770 [hep-th]]
- [17] Elvang H. and Polchinski J. 2002 The Quantum Hall Effect on R⁴ [arXiv:hep-th/0209104]

- [18] Delduc F. and Ivanov E. 2012 Nucl. Phys. B 855 815 [arXiv:1107.1429 [hep-th]]
- [19] Beisert N. 2008 Adv. Theor. Math. Phys. 12 945 [arXiv:hep-th/0511082]
- [20] Arutyunov G. and Frolov S. 2008 Nucl. Phys. B 804 90 [arXiv:0803.4323 [hep-th]]
- [21] Karabali D. and Nair V. P. 2002 Nucl. Phys. B 641 533 [arXiv:hep-th/0203264]
- [22] Ivanov E. A. et al 2010 JHEP 1005 033 [arXiv:0912.3289 [hep-th]]

Received 01.10.2012

Е. Иванов

МОДЕЛИ ЛАНДАУ С СУПЕРСИММЕТРИЯМИ НА МИРОВОЙ ЛИНИИ И В ПРОСТРАНСТВЕ ОТОБРАЖЕНИЯ: $\mathcal{N} = 2$ И $\mathcal{N} = 4$ ПРИМЕРЫ

Представлен синопсис суперрасширенных моделей Ландау, обладающих как суперсимметрией на мировой линии, так и градуированной внутренней симметрией, реализованной в пространстве отображения. Основное внимание уделено недавно построенной модели с мировой $\mathcal{N}=4$ суперсимметрией и ISU(2|2) симметрией пространства отображения.

Ключевые слова: суперсимметрия, модель Ландау, суперпространство.

Иванов Е. А., доктор физико-математических наук, профессор. Объединённый институт ядерных исследований. Ул. Жолио-Кюри, 06, Дубна, Московская обл., Россия, 141980. E-mail: eivanov@theor.jinr.ru