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If the torsion exists (i.e. if the Christo�el symbols are not symmetric), it induces the four-fermion gravitational interaction.
This interaction is dominating below the Planck scale. Its regular, axial-axial part by itself does not stop the gravitational
compression. However, the anomalous, vector-vector interaction results in a natural way both in big bounce and in in�ation.
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1. The observation that, in the presence of torsion,
the interaction of fermions with gravity results in the
four-fermion interaction of axial currents, goes back at
least to [1, 2].

We start our discussion of the four-fermion gravita-
tional interaction with the analysis of its most general
form.

As has been demonstrated in [3], the common ac-
tion for the gravitational �eld can be generalized as
follows:

Sg = − 1

16πG

∫
d4x (−e) eµI e

ν
J

(
RIJµν −

1

γ
R̃IJµν

)
; (1)

here and below G is the Newton gravitational constant,
I, J = 0, 1, 2, 3 (and M,N below) are internal Lorentz
indices, µ, ν = 0, 1, 2, 3 are space-time indices, eIµ is the
tetrad �eld, e is its determinant, and eµI is the object
inverse to eIµ. The curvature tensor is

RIJµν = −∂µωIJν+∂νω
IJ
µ+ωIKµ ωK

J
ν−ωIKν ωKJµ,

here ωIJµ is the connection. The �rst term in equation
(1) is in fact the common action of the gravitational
�eld written in tetrad components.

The second term in equation (1), that with the dual
curvature tensor

R̃IJµν =
1

2
εIJKLR

KL
µν ,

does not vanish in the presence of spinning particles
generating torsion.

As to the so-called Barbero-Immirzi parameter γ,
its numerical value

γ = 0.274 (2)

was obtained for the �rst time in [4], as the solution of
the "secular" equation

∞∑
j=1/2

(2j + 1)e−2πγ
√
j(j+1) = 1. (3)

Interaction of fermions with gravity results, in
the presence of non-propagating torsion, in the four-
fermion action which looks as follows:

Sff =
3

2
πG

γ2

γ2 + 1

∫
d4x
√
−g[ ηIJA

IAJ

+
α

γ
ηIJ(V IAJ +AIV J)− α2 ηIJV

IV J ]; (4)

here and below g is the determinant of the metric ten-
sor, AI and V I are the total axial and vector neutral
currents, respectively:

AI =
∑
a

AIa =
∑
a

ψ̄a γ
5 γI ψa ;

V I =
∑
a

V Ia =
∑
a

ψ̄a γ
I ψa ; (5)

the sums over a in (5) extend over all sorts of elemen-
tary fermions with spin 1/2.

The AA contribution to expression (4) corresponds
(up to a factor) to the action derived long ago in
[1,2]. Then, this contribution was obtained in the limit
γ → ∞ in [5] (when comparing the corresponding re-
sult from [5] with (4), one should note that our conven-
tion ηIJ = diag(1,−1,−1,−1) di�ers in sign from that
used in [5]). The present form of the AA interaction,
given in (4), was derived in [6].

As to V A and V V terms in (4), they were derived
in [7] as follows. The common action for fermions in
gravitational �eld

Sf =

∫
d4x
√
−g 1

2
[ ψ̄ γI eµI i∇µψ− i∇µψ γ

IeµIψ] (6)

can be generalized to:

Sf =

∫
d4x
√
−g 1

2
[(1− iα) ψ̄ γI eµI i∇µψ

−(1 + iα) i∇µψ γ
IeµIψ]; (7)
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here ∇µ = ∂µ− 1
4 ω

IJ
µ γIγJ ; ωIJµ is the connection.

The real constant α introduced in (7) is of no conse-
quence, generating only a total derivative, if the theory
is torsion free. However, in the presence of torsion this
constant gets operative. In particular, as demonstrated
in [7], it generates the V A and V V terms in the grav-
itational four-fermion interaction (4).

Simple dimensional arguments demonstrate that in-
teraction (4), being proportional to the Newton con-
stant G and to the particle number density squared,
gets essential and dominates over the common inter-
actions only at very high densities, i.e. on the Planck
scale and below it.

The list of papers where the gravitational four-
fermion interaction is discussed in connection with cos-
mology, is too lengthy for this short note. Therefore, I
refer here only to the most recent one [8], with a quite
extensive list of references. However, in all those pa-
pers the discussion is con�ned to the analysis of the
axial-axial interaction.

One might expect that V A and V V terms in for-
mula (4) are small as compared to the AA one. The
argument could be as follows. Under these extreme
conditions, the number densities of both fermions and
antifermions increase, due to the pair creation, but the
total vector current density V I remains intact.

By itself, this is correct. However, the analogous
line of reasoning applies to the axial current density
AI . It is in fact the di�erence of the left-handed and
right-handed axial currents: AI = AIL − AIR. There is
no reason to expect that this di�erence changes with
temperature and/ or pressure.

So, we work below with both currents, A and V .

2. Let us consider the energy-momentum tensor
(EMT) Tµν generated by action (4). Therein, the ex-
pression in square brackets has no explicit dependence
at all either on the metric tensor, or on its derivatives.
The metric tensor enters action Sff via

√
−g only, so

that the corresponding EMT is given by relation

1

2

√
−g Tµν =

δ

δgµν
Sff . (8)

Thus, with identity

1√
−g

∂
√
−g

∂gµν
= −1

2
gµν , (9)

we arrive at the following expression for the EMT:

Tµν = −3π

2
G

γ2

γ2 + 1
gµν [ηIJA

IAJ

+
α

γ
ηIJ (V IAJ +AIV J)− α2 ηIJV

IV J ]. (10)

The nonvanishing components of this expression, writ-
ten in the locally inertial frame, are energy density

T00 = ε and pressure T11 = T22 = T33 = p (for the cor-
respondence between ε, p and EMT components see [9],
�35).

Thus, the equation of state is here

ε = −p

= − π

48
G

γ2

γ2 + 1
ρ2 [(3− 11 ζ)− α2(60− 28 ζ)] . (11)

In this expression, ρ is the total density of fermions
and antifermions, and ζ =< σaσb > is the average
value of the product of corresponding σ-matrices, pre-
sumably universal for any a and b. Since the number
of sorts of fermions and antifermions is large, one can
neglect here for numerical reasons the contributions
of exchange and annihilation contributions, as well as
the fact that if σa and σb refer to the same particle,
< σaσb >= 3. The parameter ζ , just by its physical
meaning, in principle can vary in the interval from 0
(which corresponds to the complete thermal incoher-
ence or to the antiferromagnetic ordering) to 1 (which
corresponds to the complete ferromagnetic ordering).

It is only natural that after the performed averaging
over all momenta orientations, the P -odd contributions
of V A to ε and p vanish.

3. Though for α ∼ 1 the V V interaction dominates
numerically the result (11), it is instructive to start
the analysis with the discussion of the case α = 0, at
least, for the comparison with the previous investiga-
tions. We note in particular that, according to (11),
the contribution of the gravitational spin-spin interac-
tion to energy density is positive, i.e. the discussed
interaction is repulsive for fermions with aligned spins.
This our conclusion agrees with that made long ago
in [5].

To simplify the discussion, we con�ne from now on
to the region below the Planck scale, so that one can ne-
glect e�ects due to the common fermionic EMT, which
originates from the Dirac Lagrangian.

A reasonable dimensional estimate for the temper-
ature τ of the discussed medium is

τ ∼ mPl (12)

(here and below mPl is the Planck mass). This tem-
perature is roughly on the same order of magnitude as
the energy scale ω of the discussed interaction

ω ∼ Gρ ∼ mPl . (13)

Numerically, however, τ and ω can di�er essentially.
Both options, τ > ω and τ < ω, are conceivable.

If the temperature is su�ciently high, τ � ω, it de-
stroys the spin-spin correlations in formula (11). In the
opposite limit, when τ � ω, the energy density (11)
is minimized by the antiferromagnetic spin ordering.
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Thus, in both these limiting cases the energy density
and pressure simplify to

ε = − π

16

γ2

γ2 + 1
Gρ2; p =

π

16

γ2

γ2 + 1
Gρ2 . (14)

The energy density ε, being negative and proportional
to ρ2, decreases with the growth of ρ. On the other
hand, the common positive pressure p grows together
with ρ. Both these e�ects result in the compression
of the fermionic matter, and thus make the discussed
system unstable.

A curious phenomenon could be possible if initially
the temperature is su�ciently small, τ < ω, so that
equations (14) hold. Then the matter starts com-
pressing, its temperature increases, and the correlator
ζ =< σaσb > could arise. When (and if!) ζ exceeds
its critical value ζcr = 3/11, the compression changes
to expansion. Thus, we would arrive in this case at the
big bounce situation.

However, I am not aware of any physical mecha-
nism which could result here in the transition from the
initial antiferromagnetic ordering to the ferromagnetic
one with positive ζ =< σaσb >.

Here one should mention also quite popular idea
according to which the gravitational collapse can be
stopped by a positive spin-spin contribution to the en-
ergy. However, how such spin-spin correlation could
survive under the discussed extremal conditions? The
na��ve classical arguments do not look appropriate in
this case.

4. Let us come back now to equation (11). In this
general case, with nonvanishing anomalous V V inter-
action, the big bounce takes place if the energy density
(11) is positive (and correspondingly, the pressure is
negative). In other words, the anomalous, VV interac-
tion results in big bounce under the condition

α2 ≥ 3− 11ζ

4 (15− 7ζ)
. (15)

For vanishing spin-spin correlation ζ, this condition
simpli�es to

α2 ≥ 1

20
. (16)

The next remark refers to the spin-spin contribu-
tion to energy density (11)

εζ = − π

48

γ2

γ2 + 1
Gρ2 (28α2 − 11) ζ . (17)

It could result in the ferromagnetic ordering of spins if
α2 > 11/28 . Whether or not this ordering takes place,
depends on the exact relation between Gρ and temper-
ature, both of which are on the order of magnitude of
mPl.

5. Equation (11) could have serious cosmological
implications. It is rather well-known that this equation
of state ε = −p results in the exponential expansion of
the Universe. Let us consider in this connection our
problem.

We assume that the Universe is homogeneous and
isotropic, and thus is described by the well-known
Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 − a(t)2[dr2 + f(r)(dθ2 + sin2 θ dφ2)]; (18)

here f(r) depends on the topology of the Universe as
a whole:

f(r) = r2, sin2 r, sinh2 r

for the spatial �at, closed, and open Universe, respec-
tively. As to the function a(t), it depends on the equa-
tion of state of the matter.

The Einstein equations for the FRW metric (18)
reduce to

H2 ≡
(
ȧ

a

)2

=
8πGε

3
− k

a2
, (19)

ä

a
= −4πG

3
(ε+ 3p ). (20)

They are supplemented by the covariant continuity
equation, which can be written as follows:

ε̇+ 3H(ε+ p ) = 0; H =
ȧ

a
. (21)

The energy-momentum tensor (11) dominates below
the Planck scale. Since it results in ε = −p, equation
(21) reduces to

ε̇ = 0, or ε = const. (22)

It complies with EMT (10), which can be rewritten
as

Tµν = gµνε , (23)

with

ε = − π

48
G

γ2

γ2 + 1
ρ2[3− 11ζ − α2(60− 28ζ)]. (24)

As long as this contribution to the total EMT domi-
nates below the Planck scale, it should be conserved.
Then, with gµν;µ = 0, we arrive at

∂νε = 0. (25)

Thus, the energy density and pressure, ε = −p, are here
both time-independent and coordinate-independent.

As to equation (20), it simpli�es now to

ä

a
=

8πGε

3
= const. (26)
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In this way, for ε > 0, we arrive at the following ex-
pansion law:

a ∼ exp(Ht), where H =

√
8πGε

3
= const (27)

(as usual, the second, exponentially small, solution of
eq. (26) is neglected here).

Thus, the discussed gravitational four-fermion in-
teraction, induced by torsion, results in the in�ation
starting below the Planck scale.

Somewhat more detailed discussion of the problem
can be found in [10].
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È. Á. Õðèïëîâè÷

ÁÎËÜØÎÉ ÑÊÀ×ÎÊ È ÈÍÔËßÖÈß ÂÑËÅÄÑÒÂÈÅ ÃÐÀÂÈÒÀÖÈÎÍÍÎÃÎ
×ÅÒÛÐÅÕ-ÔÅÐÌÈÎÍÍÎÃÎ ÂÇÀÈÌÎÄÅÉÑÒÂÈß

Åñëè ñóùåñòâóþò òîðñèîííûå ïîëÿ (ò.å. ñèìâîëû Êðèñòîôôåëÿ íåñèììåòðè÷íû), òî âîçíèêàåò ãðàâèòàöèîííîå
÷åòûðåõ-ôåðìèîííîå âçàèìîäåéñòâèå. Ýòî âçàèìîäåéñòâèå ÿâëÿåòñÿ äîìèíèðóþùèì íèæå ïëàíêîâñêîãî óðîâíÿ.
Åãî íîðìàëüíàÿ àêñèàëüíî-àêñèàëüíàÿ ÷àñòü ñàìà íå ìîæåò îñòàíîâèòü ãðàâèòàöèîííîå ñæàòèå. Îäíàêî àíîìàëüíîå
âåêòîð-âåêòîðíîå âçàèìîäåéñòâèå åñòåñòâåííûì îáðàçîì ïðèâîäèò ê áîëüøîìó ñêà÷êó è èíôëÿöèè.

Êëþ÷åâûå ñëîâà: ïëàíêîâñêèé óðîâåíü, ãðàâèòàöèîííîå ÷åòûðåõ-ôåðìèîííîå âçàèìîäåéñòâèå, áîëüøîé ñêà÷îê,
èíôëÿöèÿ.
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