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If the torsion exists (i.e. if the Christoffel symbols are not symmetric), it induces the four-fermion gravitational interaction.
This interaction is dominating below the Planck scale. Its regular, axial-axial part by itself does not stop the gravitational
compression. However, the anomalous, vector-vector interaction results in a natural way both in big bounce and in inflation.

Keywords:

1. The observation that, in the presence of torsion,
the interaction of fermions with gravity results in the
four-fermion interaction of axial currents, goes back at
least to [1,2].

We start our discussion of the four-fermion gravita-
tional interaction with the analysis of its most general
form.

As has been demonstrated in [3], the common ac-
tion for the gravitational field can be generalized as
follows:
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here and below G is the Newton gravitational constant,
I,J=0,1,2,3 (and M, N below) are internal Lorentz
indices, u, v = 0,1, 2, 3 are space-time indices, ei is the
tetrad field, e is its determinant, and €4 is the object
inverse to e . The curvature tensor is
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here w{;’ is the connection. The first term in equation

(1) is in fact the common action of the gravitational
field written in tetrad components.

The second term in equation (1), that with the dual
curvature tensor
~ 1
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does not vanish in the presence of spinning particles
generating torsion.

As to the so-called Barbero-Immirzi parameter ~,
its numerical value

v =0.274 (2)

was obtained for the first time in [4], as the solution of
the "secular" equation
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Interaction of fermions with gravity results, in
the presence of non-propagating torsion, in the four-
fermion action which looks as follows:
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here and below g is the determinant of the metric ten-
sor, A’ and V' are the total axial and vector neutral
currents, respectively:
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the sums over a in (5) extend over all sorts of elemen-
tary fermions with spin 1/2.

The AA contribution to expression (4) corresponds
(up to a factor) to the action derived long ago in
[1,2]. Then, this contribution was obtained in the limit
v — oo in [5] (when comparing the corresponding re-
sult from [5] with (4), one should note that our conven-
tion 7y = diag(1l, —1,—1, —1) differs in sign from that
used in [5]). The present form of the AA interaction,
given in (4), was derived in [6].

As to VA and VV terms in (4), they were derived
in [7] as follows. The common action for fermions in
gravitational field
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can be generalized to:
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here V|, =0, — 7w, 77,5 w'’,is the connection.

The real constant « introduced in (7) is of no conse-
quence, generating only a total derivative, if the theory
is torsion free. However, in the presence of torsion this
constant gets operative. In particular, as demonstrated
in [7], it generates the VA and V'V terms in the grav-
itational four-fermion interaction (4).

Simple dimensional arguments demonstrate that in-
teraction (4), being proportional to the Newton con-
stant G and to the particle number density squared,
gets essential and dominates over the common inter-
actions only at very high densities, i.e. on the Planck
scale and below it.

The list of papers where the gravitational four-
fermion interaction is discussed in connection with cos-
mology, is too lengthy for this short note. Therefore, I
refer here only to the most recent one [8], with a quite
extensive list of references. However, in all those pa-
pers the discussion is confined to the analysis of the
axial-axial interaction.

One might expect that VA and V'V terms in for-
mula (4) are small as compared to the AA one. The
argument could be as follows. Under these extreme
conditions, the number densities of both fermions and
antifermions increase, due to the pair creation, but the
total vector current density V! remains intact.

By itself, this is correct. However, the analogous
line of reasoning applies to the axial current density
Al Tt is in fact the difference of the left-handed and
right-handed axial currents: A7 = Al — AL. There is
no reason to expect that this difference changes with
temperature and/ or pressure.

So, we work below with both currents, A and V.

2. Let us consider the energy-momentum tensor
(EMT) T),,, generated by action (4). Therein, the ex-
pression in square brackets has no explicit dependence
at all either on the metric tensor, or on its derivatives.
The metric tensor enters action Sy via /—g only, so
that the corresponding EMT is given by relation
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Thus, with identity
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we arrive at the following expression for the EMT:
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The nonvanishing components of this expression, writ-
ten in the locally inertial frame, are energy density

Too = € and pressure Ty = Ty = T33 = p (for the cor-
respondence between ¢, p and EMT components see [9],
§35).

Thus, the equation of state is here

e=-p
m 72
——4—8672“ p*[(3—11¢) — a?(60 —28¢)]. (11)

In this expression, p is the total density of fermions
and antifermions, and ( =< o,0, > is the average
value of the product of corresponding o-matrices, pre-
sumably universal for any a and b. Since the number
of sorts of fermions and antifermions is large, one can
neglect here for numerical reasons the contributions
of exchange and annihilation contributions, as well as
the fact that if o, and o refer to the same particle,
< 04,0, >= 3. The parameter (, just by its physical
meaning, in principle can vary in the interval from 0
(which corresponds to the complete thermal incoher-
ence or to the antiferromagnetic ordering) to 1 (which
corresponds to the complete ferromagnetic ordering).

It is only natural that after the performed averaging
over all momenta orientations, the P-odd contributions
of VA to e and p vanish.

3. Though for a ~ 1 the V'V interaction dominates
numerically the result (11), it is instructive to start
the analysis with the discussion of the case o = 0, at
least, for the comparison with the previous investiga-
tions. We note in particular that, according to (11),
the contribution of the gravitational spin-spin interac-
tion to energy density is positive, i.e. the discussed
interaction is repulsive for fermions with aligned spins.
This our conclusion agrees with that made long ago
in [5].

To simplify the discussion, we confine from now on
to the region below the Planck scale, so that one can ne-
glect effects due to the common fermionic EMT, which
originates from the Dirac Lagrangian.

A reasonable dimensional estimate for the temper-
ature 7 of the discussed medium is
T ~ mpj (12)
(here and below mp; is the Planck mass). This tem-
perature is roughly on the same order of magnitude as
the energy scale w of the discussed interaction

w~ Gp ~ mpy. (13)
Numerically, however, 7 and w can differ essentially.
Both options, 7 > w and 7 < w, are conceivable.

If the temperature is sufficiently high, 7 > w, it de-
stroys the spin-spin correlations in formula (11). In the
opposite limit, when 7 < w, the energy density (11)
is minimized by the antiferromagnetic spin ordering.
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Thus, in both these limiting cases the energy density
and pressure simplify to

2 2
T 2. T 0 2
P=15251 07" (14)
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The energy density €, being negative and proportional
to p?, decreases with the growth of p. On the other
hand, the common positive pressure p grows together
with p. Both these effects result in the compression
of the fermionic matter, and thus make the discussed
system unstable.

A curious phenomenon could be possible if initially
the temperature is sufficiently small, 7 < w, so that
equations (14) hold. Then the matter starts com-
pressing, its temperature increases, and the correlator
( =< 040 > could arise. When (and if!) ¢ exceeds
its critical value (.. = 3/11, the compression changes
to expansion. Thus, we would arrive in this case at the
big bounce situation.

However, I am not aware of any physical mecha-
nism which could result here in the transition from the
initial antiferromagnetic ordering to the ferromagnetic
one with positive ( =< .0} >.

Here one should mention also quite popular idea
according to which the gravitational collapse can be
stopped by a positive spin-spin contribution to the en-
ergy. However, how such spin-spin correlation could
survive under the discussed extremal conditions? The
naive classical arguments do not look appropriate in
this case.

4. Let us come back now to equation (11). In this
general case, with nonvanishing anomalous V'V inter-
action, the big bounce takes place if the energy density
(11) is positive (and correspondingly, the pressure is
negative). In other words, the anomalous, VV interac-
tion results in big bounce under the condition

2 3—11¢

T 4(15-7¢) (15)

For vanishing spin-spin correlation (, this condition
simplifies to

(16)
The next remark refers to the spin-spin contribu-

tion to energy density (11)

2
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g = Gp*(28a* —11)¢. (17)
It could result in the ferromagnetic ordering of spins if
a? > 11/28. Whether or not this ordering takes place,
depends on the exact relation between Gp and temper-
ature, both of which are on the order of magnitude of

mpj.

5. Equation (11) could have serious cosmological
implications. It is rather well-known that this equation
of state e = —p results in the exponential expansion of
the Universe. Let us consider in this connection our
problem.

We assume that the Universe is homogeneous and
isotropic, and thus is described by the well-known
Friedmann-Robertson-Walker (FRW) metric
ds* = dt* — a(t)®[dr® + f(r)(d6® +sin® 0 d¢?)];  (18)
here f(r) depends on the topology of the Universe as
a whole:

f(r)y =72, sin’r, sinh®r

for the spatial flat, closed, and open Universe, respec-
tively. As to the function a(t), it depends on the equa-
tion of state of the matter.

The Einstein equations for the FRW metric (18)
reduce to

.\ 2
s (4) _sG=

a _<a> 3 a?’ (19)
a ArG

—=—— (e +3p). (20)

They are supplemented by the covariant continuity
equation, which can be written as follows:

=2

E+3H(e+p)=0; ”

(21)
The energy-momentum tensor (11) dominates below
the Planck scale. Since it results in € = —p, equation
(21) reduces to

(22)

€¢=0, or &= const.

It complies with EMT (10), which can be rewritten
as

T = e (23)
with
2
_ T Y 29 2 .
€= 48G72+1p [3 —11¢ — (60 — 28¢)]. (24)

As long as this contribution to the total EMT domi-
nates below the Planck scale, it should be conserved.
Then, with g"7, = 0, we arrive at

dye = 0. (25)

Thus, the energy density and pressure, £ = —p, are here

both time-independent and coordinate-independent.
As to equation (20), it simplifies now to

a 8rnGe

a 3

(26)

= const.
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In this way, for ¢ > 0, we arrive at the following ex-
pansion law:

a~exp(Ht), where H =4/ 87T3G€ = const (27)

(as usual, the second, exponentially small, solution of
eq. (26) is neglected here).

Thus, the discussed gravitational four-fermion in-
teraction, induced by torsion, results in the inflation
starting below the Planck scale.

Somewhat more detailed discussion of the problem
can be found in [10].
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H. B. Xpunaosun

BOJIBIIION CKAYOK U MH®JISINS BCJEICTBUE 'PABUTAIIMOHHOT O
YETBIPEX-®EPMHNOHHOT'O BSBAVUMOJENCTBUA

Ecau CymecTByIOT TOPCHOHHBIE HOJs (T.e.
qeTbIpex-(GhepMUOHHOE B3aUMOJIeHCTBUE.

cumBosbl Kpucroddenss HeCHMMETPUIHBL), TO BO3HHKAET IDABHTALEOHHOE
9TO B3aMMOJIEHCTBHE ABJLAETCS JOMHHHUPYIOIMIUM HUXKe IIJIAHKOBCKOTO yPOBHA.

Ero HopMaJibHad aKCHAJIHHO-aKCUAJIBHAS YaCTh CAMa HEe MOXKET OCTAHOBUTH IPABUTAIMOHHOE CkaTue. OJHAKO aHOMAJIBHOE
BEKTOP-BEKTODHOE B3aUMOJEHCTBUE €CTECTBEHHBIM 00pa30M MPUBOIUT K OOJBINOMY CKAYKy U MHMJIIAIMH.

KuroueBble Cj10Ba: NAGHKOSCKUT YPOBEHD, 2DABUMAUUOHHOE YeMbPEeT-PepMUOHHoe 83aumodeticmeue, 60abvuol CKawox,

UHPAAUUA.
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