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We consider cosmological perturbations in the theory of gravity with nonminimal kinetic coupling. The Lagrangian of
the theory contains the term nGij¢’i¢7j, and represents the particular example of a general Horndeski Lagrangian, which
results in second-order field equations. We derive a complete set of equations for scalar, vector and tensor pertubations.
The tensor modes are analyzed in detail. It is shown that their behavior inside the Hubble horizon differs cardinally from
the analogous behavior of tensor modes in Friedmann cosmology.
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1 Introduction

Natural modifications of general relativity are the
models describing possible nonminimal coupling be-
tween matter fields and the curvature. The most inten-
sively and widely studied are various nonminimal ge-
neralizations of scalar-tensor theories of gravity which
have numerous cosmological applications (see Ref. [1]
for detailed reviews of these and other models). An
especial approach to modified theories of gravity repre-
sent models allowing for nonminimal coupling between
derivatives of dynamic quantities of matter fields and
the curvature. The most general scalar-tensor theory
of such type was suggested in the 70-es of the last cen-
tury in the Horndeski work [2]. Horndeski developed
his theory on the base of mathematical facts but later
the same results were obtained on the basis of more
intuitive approach from Galileons research [3].

The simplest Lagrangian in the Horndeski theory
contains a term G*Y¢ ,¢ , providing nonminimal ki-
netic coupling of a scalar field to the curvature. Cos-
mological applications of such theory have been inten-
sively investigated in [4,5]. In particular, in our re-
cent works [4] we have found that the non-minimal
derivative coupling provides an essentially new infla-
tionary mechanism and naturally describes transitions
between various cosmological phases without any fine-
tuning potential.

It is worth noticing that most of works on cosmolo-
gies with nonminimal kinetic coupling had focused on
the background cosmological evolution. However, in
order to reveal the full structure and the physical im-
plications of the theory, one must proceed to the de-
tailed investigation of the perturbations. The linear
scalar perturbations was discussed in Ref. [6]. The aim
of this work is to derive the complete set of equations
for scalar, vector and tensor cosmological pertubations

nonminimal kinetic coupling, cosmological perturbations.

in the theory of gravity with nonminimal kinetic cou-
pling.

2 Field equations

The action of the theory of gravity with nonmini-
mal kinetic coupling is given as follows

R
5 = / d4~””v9{sﬂ<€gw+nGw)¢’“¢’”

(1)

where Sy, is the action for ordinary matter (not inclu-
ding the scalar field), and 7 is the coupling parameter
with dimension of (length)?. Varying the action with
respect to g,,, and ¢ gives the field equations, respec-
tively:
Gy =8 [T\ + T8 +10,.,], (2)
[eg"” +nG* |V Vo = —Vy, (3)
where V, = dV (¢)/d¢, TF(LT) is a stress-energy tensor
of ordinary matter, and
79 = elVudVid — 59(V)?] = gV (),
O = —%Vﬂqﬁ Vo R+2VadV(,0R),
+ va¢ vﬁ¢ R/LauB + vuva¢ vuva¢
- V,V,00¢ — (V)G
+ g - 3VOVIEVL V0
+ 3(0¢)* = Vad Vo RV (5)
Now let us consider a spatially-flat FRW cosmolog-
ical model with the metric

ds® = —dt* + a*(1)8;;dz"da? (6)

where a(t) is the scale factor, and H(t) = a(t)/a(t)
is the Hubble parameter. Supposing homogeneity

and isotropy, we also get ¢ = ¢(t) and TﬁT) =

— 2V(¢>)] + S,

(4)
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diag(p,p,p,p), where p = p(t) is the energy density
and p = p(t) is the pressure of matter.

The general field equations (2), (3) written for the
metric (6) yield

3H? = 87p + dnd?* (e — IH?) + 87V (¢), (7)
2H + 3H? = —8mp + 87V ()
— 47 d? [s i (2H +3H? + 4H¢é¢'r1ﬂ , 8)

(¢ +3H¢) — 3n(H? )+ 2HH + 3H?)) = -V, (9)

where a dot denotes derivatives with respect to time.
The most intriguing feature of this model is ex-
istence of an essentially new inflationary mechanism
which does not depend on a form of scalar potential.
The inflation is driven by terms in the field equations
responsible for the nonminimal derivative coupling. At
early times these terms are dominating, and the cos-
mological evolution has the quasi-de Sitter character
a(t) oc et with H,, = 1/4/9n. Later, in the course of
the cosmological evolution the domination of n-terms
is canceled, the usual matter comes into play, and the
Universe enters into the matter-dominated epoch.

3 Perturbations
Let us consider the perturbed FRW metric:
Juv = Guv + By,
where g,,,, is the background metric:
Goo = —1, Gio = goi =0, gij = a® (t) &;;

and h,, = h,, are small perturbations. Hereafter, we
perform the calculations supposing that h;g = hg; = 0
and using the Newtonian gauge for scalar perturba-
tions. Generally, we have

hoo —F, (11)
hio = a(0iF +Gy), (12)
hij = a? (A(SU + 8ijB

+ @CJ + (%C’z + DU) s (13)

where A, B, E, F are scalars (helicity 0), C;, G; are
transverse vectors (helicity 1), and D;; = Dj; is a
transverse traceless tensor (helicity 2). All functions
depend on x and ¢ and obey the following conditions:
0;Ci =0;G; =0, 0;D;; =0, D=0,

Also we have the following perturbations of the stress-
energy tensor:

0Too = —phoo + p, (14)
0Tio = phio — (p+ p)dus, (15)
§T;; = phij +a58;;0p, (16)

and the scalar field:

¢(Xa t) = Q;O(t) + 5¢(X7 t)'

Substituting the pertubed values (11)-(17) into the
field equations (2) and taking into account the back-
ground equations (7)-(9), one can obtain the following
equations for perturbations:
00-component:

(17)

P,E + P,A+ P;V?A

+ P64+ PsV26p + Psdp = 0.
1i-component:

Q1E + Q2E + Q3V2E

+ QuA+ Qs A+ QsVPA+ Q706
+ Q300 + Q9 V236 + Qrodp = 0.
0¢-component:

R10;E + R29; A + R3V?C;

+ R49;0¢ + R50;6¢ + Rgdu; = 0.
ij-component:

S510;0; E + S20;0; A 4 S30;0;00
+ 81 (0:C5 + 0,Ci) + S5 (0iC + 9,C:)

+S¢D;j + S7Dij 4+ SsV2D;j = 0. (21)

4 Tensor modes

Let us discuss tensor modes D;; of cosmological per-
turbations. Using Eqgs. (21) and (31), we obtain

(1 + 4mnd?) Dij + (3H + (206 + 3H¢'>2)) Di;

1 — 4mnd?)AD;; = 0. (22)

— 07(
As usually, an arbitrary transversal traceless tensor D;;
can be represented as a linear combination of two ba-
sic tensors el(;) and egjx) with helicities +2 and —2,
respectively, so that

Diy= > e 6™,
A=t,x

(23)

where 6(4) are amplitudes. Applying the Fourier trans-
form

0 (t,x) = / dke™ 0 (¢, k), (24)
we can rewrite Eq. (22) as follows:
(1 + 47nd?)d + (3H +Amn(206 + 3H¢2)) i
k? 9
+ ﬁ(l — 4mn$*)0 = 0. (25)
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(Hereafter, for simplicity, we have omitted the index
A.) Now, it is worth considering two limiting cases.

A. 4mné? < 1.

In this case we can neglect terms responsible for the
nonminimal kinetic coupling, and Eq. (25) for tensor
amplitudes 04 reads
.. . k2
0+3H0+¥6’:0. (26)
This is nothing but the well-known equation describing
an evolution of tensor modes in Friedmann cosmology.
In case k/a < H (outside the Hubble horizon) 6 is con-
stant; in case k/a > H (inside the Hubble horizon) the
amplitude 6 behaves as a damping oscillating mode.

B. 4md? > 1.

In this case terms in the field equations responsi-
ble for the nonminimal kinetic coupling are domina-
ting, and the background cosmological evolution has
the quasi-de Sitter character a(t) < efln! with H, =
1/4/9n, and the scalar field behaves as ¢(t) o e~ 3Hnt
(see Ref. [4]). Now, Eq. (25) takes the following form:

k2

0 —3H,0— ~0=0. (27)

As in the previous case, we can see that amplitudes of
tensor modes outside the Hubble horizon, i.e., k/a <
H,, are constant. However, a behavior of modes in-
side the Hubble horizon, when k/a > H,, is cardinally

changed. From Eq. (27) we find 6 oc exp(k [ ).

5 Summary

In this paper we have derived a complete set of
equations for scalar, vector and tensor cosmological
pertubations in the theory of gravity with nonminimal
kinetic coupling. Tensor modes have been analyzed in
more details. It has been shown that their behavior
inside the Hubble horizon differs cardinally from the
analogous behavior of tensor modes in Friedmann cos-
mology.
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Appendix: Coefficients of perturbed equations

In this section we present explicit expressions for
coefficients P;, Q);, R;, and S;, which appear in Eqs.
(18)— (21) for cosmological perturbations.

Coefficients P;:

9 .
Py =87 (P + 277H2¢2> )

P, = 3H (1 n 127m¢'52) ,

Py= L (1 + 47m<;'s2) ,

P, = —87r$ (5 — 977H2) ,

167 H ¢
e

P6 = —8m.
Coeflicients Q;:

(28)

Q1 = dned? + 32t Hod + (3H2 + 2H) (1 + 87m¢2) :
Qo= H (1 + 127m<i>2) ,

Qs = 312 (1 + drnd )

Qs = —3H (1 + 47m<z52) — 8nnHod,
Qs =— (1 + 47T77<132) ,

Qo = 312 (1 - 4m7¢2)

Q7 = —8 [(5 4 3pH? + 277H) pt 277H¢5} ,

Qs = ~16mH¢,
167n
Qs = n (¢ + HY).
Q1o = — (29)
Coefficients R;:
Ri=H (1 n 12m7¢'>2) ,
Ry = — (]. +47T77(i)2) ,
1 P2
Ry = 5 (144mmé?).
Ry = —87T¢ (5 — 377H2) ,
Ry = —167nH ¢,
Rg =8r(p+p). (30)
Coefficients S;:
1+ 47r77(ﬁ2
=Tl
1-— 47r77¢2
=gl
8w
Sy =—=5 ($+ HP),
.. 3 .
Su = 4mndd + SH (1 + 4m¢2) :
Sy = (1 + 470 )
Sg = dmndd + H (1 + dmng )
S7 = (1 + 47né )
1 — 4mng?
Sg = 53 (31)
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P. A. A63anos, C. B. Cywxkos

KOCMOJIOTTYECKUWE BOSMYIIEHNSA B TEOPUN 'PABUTAIINN C
HEMNWHNMAJIBHOV KUHETNYECKOU CBA3bIO

PaccMmoTrpeHbl KOCMOIOTHYeCKre BO3MYIIEHHST B TEOPUU I'PABATAINH C HEMUHUMAJILHON KHHETHIECKOH CBA3BIO. JlarpaHxku-
aH MOJEJHN COMNEPKUT UJIEeH BUIA nG"’jqﬁ,iqj ¥ TIpeACTaBJIsIeT cOOOM YaCTHBIM mMpuMep OOIEro JarpaHKHUaHa XOPHIECKH,
KOTOPBIM NPUBOAUT K yPABHEHHUSM ABUKEHHS BTOPOrO mopsaka. llocTpoeH mosHsiit HaOOD ypaBHEHHUIH IJIS CKAJISPHBIX,
BEKTODHBIX M TEH30DHBIX BO3MyIeHHH. JleTaJbHO HCCIeA0BAHBI TEH30PHBIE MOJIBI Bo3MymieHuit. [lokazaHo, 4TO UX MMO-
BeJ€HME MOJ Xa0OJJOBCKUM TOPU30HTOM KAPAMHAJLHO OTJIHYAETCS OT COOTBETCTBYIOUIErO MOBEIEHMS TEH30PHBIX MOJ BO
GPUIMAHOBCKOM KOCMOJIOTHH.
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