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We consider cosmological perturbations in the theory of gravity with nonminimal kinetic coupling. The Lagrangian of
the theory contains the term ηGijφ,iφ,j , and represents the particular example of a general Horndeski Lagrangian, which
results in second-order �eld equations. We derive a complete set of equations for scalar, vector and tensor pertubations.
The tensor modes are analyzed in detail. It is shown that their behavior inside the Hubble horizon di�ers cardinally from
the analogous behavior of tensor modes in Friedmann cosmology.

Keywords: nonminimal kinetic coupling, cosmological perturbations.

1 Introduction

Natural modi�cations of general relativity are the
models describing possible nonminimal coupling be-
tween matter �elds and the curvature. The most inten-
sively and widely studied are various nonminimal ge-
neralizations of scalar-tensor theories of gravity which
have numerous cosmological applications (see Ref. [1]
for detailed reviews of these and other models). An
especial approach to modi�ed theories of gravity repre-
sent models allowing for nonminimal coupling between
derivatives of dynamic quantities of matter �elds and
the curvature. The most general scalar-tensor theory
of such type was suggested in the 70-es of the last cen-
tury in the Horndeski work [2]. Horndeski developed
his theory on the base of mathematical facts but later
the same results were obtained on the basis of more
intuitive approach from Galileons research [3].

The simplest Lagrangian in the Horndeski theory
contains a term Gµνφ,µφ,ν providing nonminimal ki-
netic coupling of a scalar �eld to the curvature. Cos-
mological applications of such theory have been inten-
sively investigated in [4, 5]. In particular, in our re-
cent works [4] we have found that the non-minimal
derivative coupling provides an essentially new in�a-
tionary mechanism and naturally describes transitions
between various cosmological phases without any �ne-
tuning potential.

It is worth noticing that most of works on cosmolo-
gies with nonminimal kinetic coupling had focused on
the background cosmological evolution. However, in
order to reveal the full structure and the physical im-
plications of the theory, one must proceed to the de-
tailed investigation of the perturbations. The linear
scalar perturbations was discussed in Ref. [6]. The aim
of this work is to derive the complete set of equations
for scalar, vector and tensor cosmological pertubations

in the theory of gravity with nonminimal kinetic cou-
pling.

2 Field equations

The action of the theory of gravity with nonmini-
mal kinetic coupling is given as follows

S =

∫
d4x
√
−g
[
R

8π
−
(
εgµν + ηGµν

)
φ,µφ,ν

− 2V (φ)

]
+ Sm, (1)

where Sm is the action for ordinary matter (not inclu-
ding the scalar �eld), and η is the coupling parameter
with dimension of (length)2. Varying the action with
respect to gµν and φ gives the �eld equations, respec-
tively:

Gµν = 8π
[
T (m)
µν + T (φ)

µν + ηΘµν

]
, (2)

[εgµν + ηGµν ]∇µ∇νφ = −Vφ, (3)

where Vφ ≡ dV (φ)/dφ, T
(m)
µν is a stress-energy tensor

of ordinary matter, and

T (φ)
µν = ε[∇µφ∇νφ− 1

2gµν(∇φ)2]− gµνV (φ), (4)

Θµν = − 1
2∇µφ∇νφR+ 2∇αφ∇(µφR

α
ν)

+ ∇αφ∇βφRµανβ +∇µ∇αφ∇ν∇αφ
− ∇µ∇νφ�φ− 1

2 (∇φ)2Gµν

+ gµν
[
− 1

2∇
α∇βφ∇α∇βφ

+ 1
2 (�φ)2 −∇αφ∇βφRαβ

]
. (5)

Now let us consider a spatially-�at FRW cosmolog-
ical model with the metric

ds2 = −dt2 + a2(t)δijdx
idxj , (6)

where a(t) is the scale factor, and H(t) = ȧ(t)/a(t)
is the Hubble parameter. Supposing homogeneity

and isotropy, we also get φ = φ(t) and T
(m)
µν =
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diag(ρ, p, p, p), where ρ = ρ(t) is the energy density
and p = p(t) is the pressure of matter.

The general �eld equations (2), (3) written for the
metric (6) yield

3H2 = 8πρ+ 4πφ̇2
(
ε− 9ηH2

)
+ 8πV (φ), (7)

2Ḣ + 3H2 = −8πp+ 8πV (φ)

− 4πφ̇2
[
ε+ η

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
, (8)

ε(φ̈+ 3Hφ̇)− 3η(H2φ̈+ 2HḢφ̇+ 3H3φ̇) = −Vφ, (9)

where a dot denotes derivatives with respect to time.
The most intriguing feature of this model is ex-

istence of an essentially new in�ationary mechanism
which does not depend on a form of scalar potential.
The in�ation is driven by terms in the �eld equations
responsible for the nonminimal derivative coupling. At
early times these terms are dominating, and the cos-
mological evolution has the quasi-de Sitter character
a(t) ∝ eHηt with Hη = 1/

√
9η. Later, in the course of

the cosmological evolution the domination of η-terms
is canceled, the usual matter comes into play, and the
Universe enters into the matter-dominated epoch.

3 Perturbations

Let us consider the perturbed FRW metric:

gµν = ḡµν + hµν , (10)

where ḡµν is the background metric:

ḡ00 = −1, ḡi0 = ḡ0i = 0, ḡij = a2 (t) δij

and hµν = hνµ are small perturbations. Hereafter, we
perform the calculations supposing that hi0 = h0i = 0
and using the Newtonian gauge for scalar perturba-
tions. Generally, we have

h00 = −E, (11)

hi0 = a (∂iF +Gi) , (12)

hij = a2 (Aδij + ∂ijB

+ ∂iCj + ∂jCi +Dij) , (13)

where A, B, E, F are scalars (helicity 0), Ci, Gi are
transverse vectors (helicity 1), and Dij = Dji is a
transverse traceless tensor (helicity 2). All functions
depend on x and t and obey the following conditions:

∂iCi = ∂iGi = 0, ∂iDij = 0, Dii = 0,

Also we have the following perturbations of the stress-
energy tensor:

δT00 = −ρh00 + δρ, (14)

δTi0 = phi0 − (ρ+ p)δui, (15)

δTij = phij + a2δijδp, (16)

and the scalar �eld:

φ(x, t) = φ̄0(t) + δφ(x, t). (17)

Substituting the pertubed values (11)-(17) into the
�eld equations (2) and taking into account the back-
ground equations (7)-(9), one can obtain the following
equations for perturbations:
00-component:

P1E + P2Ȧ+ P3∇2A

+ P4δφ̇+ P5∇2δφ+ P6δρ = 0. (18)

ii-component:

Q1E +Q2Ė +Q3∇2E

+Q4Ȧ+Q5Ä+Q6∇2A+Q7δφ̇

+Q8δφ̈+Q9∇2δφ+Q10δp = 0. (19)

0i-component:

R1∂iE +R2∂iȦ+R3∇2Ċi

+R4∂iδφ+R5∂iδφ̇+R6δui = 0. (20)

ij-component:

S1∂i∂jE + S2∂i∂jA+ S3∂i∂jδφ

+ S4

(
∂iĊj + ∂jĊi

)
+ S5

(
∂iC̈j + ∂jC̈i

)
+ S6Ḋij + S7D̈ij + S8∇2Dij = 0. (21)

4 Tensor modes

Let us discuss tensor modesDij of cosmological per-
turbations. Using Eqs. (21) and (31), we obtain

(1 + 4πηφ̇2)D̈ij +
(

3H + 4πη(2φ̇φ̈+ 3Hφ̇2)
)
Ḋij

− 1

a2
(1− 4πηφ̇2)∆Dij = 0. (22)

As usually, an arbitrary transversal traceless tensorDij

can be represented as a linear combination of two ba-

sic tensors e
(+)
ij and e

(×)
ij with helicities +2 and −2,

respectively, so that

Dij =
∑

A=+,×
e

(A)
ij θ(A), (23)

where θ(A) are amplitudes. Applying the Fourier trans-
form

θ(A)(t,x) =

∫
dkeikxθ(A)(t,k), (24)

we can rewrite Eq. (22) as follows:

(1 + 4πηφ̇2)θ̈ +
(

3H + 4πη(2φ̇φ̈+ 3Hφ̇2)
)
θ̇

+
k2

a2
(1− 4πηφ̇2)θ = 0. (25)
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(Hereafter, for simplicity, we have omitted the index
A.) Now, it is worth considering two limiting cases.

A. 4πηφ̇2 � 1.
In this case we can neglect terms responsible for the

nonminimal kinetic coupling, and Eq. (25) for tensor
amplitudes θ(A) reads

θ̈ + 3Hθ̇ +
k2

a2
θ = 0. (26)

This is nothing but the well-known equation describing
an evolution of tensor modes in Friedmann cosmology.
In case k/a� H (outside the Hubble horizon) θ is con-
stant; in case k/a� H (inside the Hubble horizon) the
amplitude θ behaves as a damping oscillating mode.

B. 4πηφ̇2 � 1.
In this case terms in the �eld equations responsi-

ble for the nonminimal kinetic coupling are domina-
ting, and the background cosmological evolution has
the quasi-de Sitter character a(t) ∝ eHηt with Hη =
1/
√

9η, and the scalar �eld behaves as φ(t) ∝ e−3Hηt

(see Ref. [4]). Now, Eq. (25) takes the following form:

θ̈ − 3Hη θ̇ −
k2

a2
θ = 0. (27)

As in the previous case, we can see that amplitudes of
tensor modes outside the Hubble horizon, i.e., k/a �
Hη, are constant. However, a behavior of modes in-
side the Hubble horizon, when k/a� Hη, is cardinally
changed. From Eq. (27) we �nd θ ∝ exp(k

∫
dt
a ).

5 Summary

In this paper we have derived a complete set of
equations for scalar, vector and tensor cosmological
pertubations in the theory of gravity with nonminimal
kinetic coupling. Tensor modes have been analyzed in
more details. It has been shown that their behavior
inside the Hubble horizon di�ers cardinally from the
analogous behavior of tensor modes in Friedmann cos-
mology.
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Appendix: Coe�cients of perturbed equations

In this section we present explicit expressions for
coe�cients Pi, Qi, Ri, and Si, which appear in Eqs.
(18)� (21) for cosmological perturbations.

Coe�cients Pi:

P1 = −8π

(
ρ+

9

2
ηH2φ̇2

)
,

P2 = 3H
(

1 + 12πηφ̇2
)
,

P3 = − 1

a2

(
1 + 4πηφ̇2

)
,

P4 = −8πφ̇
(
ε− 9ηH2

)
,

P5 = −16πηHφ̇

a2
,

P6 = −8π. (28)

Coe�cients Qi:

Q1 = 4πεφ̇2 + 32πηHφ̇φ̈+
(

3H2 + 2Ḣ
)(

1 + 8πηφ̇2
)
,

Q2 = H
(

1 + 12πηφ̇2
)
,

Q3 =
1

3a2

(
1 + 4πηφ̇2

)
,

Q4 = −3H
(

1 + 4πηφ̇2
)
− 8πηHφ̇φ̈,

Q5 = −
(

1 + 4πηφ̇2
)
,

Q6 =
1

3a2

(
1− 4πηφ̇2

)
,

Q7 = −8π
[(
ε+ 3ηH2 + 2ηḢ

)
φ̇+ 2ηHφ̈

]
,

Q8 = −16πηHφ̇,

Q9 =
16πη

3a2

(
φ̈+Hφ̇

)
,

Q10 = −8π. (29)

Coe�cients Ri:

R1 = H
(

1 + 12πηφ̇2
)
,

R2 = −
(

1 + 4πηφ̇2
)
,

R3 =
1

2

(
1 + 4πηφ̇2

)
,

R4 = −8πφ̇
(
ε− 3ηH2

)
,

R5 = −16πηHφ̇,

R6 = 8π (ρ+ p) . (30)

Coe�cients Si:

S1 = −1 + 4πηφ̇2

2a2
,

S2 = −1− 4πηφ̇2

2a2
,

S3 = −8πη

a2

(
φ̈+Hφ̇

)
,

S4 = 4πηφ̇φ̈+
3

2
H
(

1 + 4πηφ̇2
)
,

S5 =
1

2

(
1 + 4πηφ̇2

)
,

S6 = 4πηφ̇φ̈+
3

2
H
(

1 + 4πηφ̇2
)
,

S7 =
1

2

(
1 + 4πηφ̇2

)
,

S8 = −1− 4πηφ̇2

2a2
. (31)
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Ð. À. Àáçàëîâ, Ñ. Â. Ñóøêîâ

ÊÎÑÌÎËÎÃÈ×ÅÑÊÈÅ ÂÎÇÌÓÙÅÍÈß Â ÒÅÎÐÈÈ ÃÐÀÂÈÒÀÖÈÈ Ñ
ÍÅÌÈÍÈÌÀËÜÍÎÉ ÊÈÍÅÒÈ×ÅÑÊÎÉ ÑÂßÇÜÞ

Ðàññìîòðåíû êîñìîëîãè÷åñêèå âîçìóùåíèÿ â òåîðèè ãðàâèòàöèè ñ íåìèíèìàëüíîé êèíåòè÷åñêîé ñâÿçüþ. Ëàãðàíæè-
àí ìîäåëè ñîäåðæèò ÷ëåí âèäà ηGijφ,iφ,j è ïðåäñòàâëÿåò ñîáîé ÷àñòíûé ïðèìåð îáùåãî ëàãðàíæèàíà Õîðíäåñêè,
êîòîðûé ïðèâîäèò ê óðàâíåíèÿì äâèæåíèÿ âòîðîãî ïîðÿäêà. Ïîñòðîåí ïîëíûé íàáîð óðàâíåíèé äëÿ ñêàëÿðíûõ,
âåêòîðíûõ è òåíçîðíûõ âîçìóùåíèé. Äåòàëüíî èññëåäîâàíû òåíçîðíûå ìîäû âîçìóùåíèé. Ïîêàçàíî, ÷òî èõ ïî-
âåäåíèå ïîä õàááëîâñêèì ãîðèçîíòîì êàðäèíàëüíî îòëè÷àåòñÿ îò ñîîòâåòñòâóþùåãî ïîâåäåíèÿ òåíçîðíûõ ìîä âî
ôðèäìàíîâñêîé êîñìîëîãèè.

Êëþ÷åâûå ñëîâà: íåìèíèìàëüíàÿ êèíåòè÷åñêàÿ ñâÿçü, êîñìîëîãè÷åñêèå âîçìóùåíèÿ.
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