Tomsk State Pedagogical University Bulletin
RU EN






Today: 09.06.2023
Home Issues 2014 Year Issue №12 FINITE BRST-ANTIBRST TRANSFORMATIONS FOR THE THEORIES WITH GAUGE GROUP
  • Home
  • Current Issue
  • Bulletin Archive
    • 2023 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2022 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2021 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2020 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2019 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 2018 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
    • 2017 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2016 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2015 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2014 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2013 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2012 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2011 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2010 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2009 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2008 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2007 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
    • 2006 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2005 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2004 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2003 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
    • 2002 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2001 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2000 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 1999 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 1998 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 1997 Year
      • Issue №1
      • Issue №2
      • Issue №3
  • Rating
  • Search
  • News
  • Editorial Board
  • Information for Authors
  • Review Procedure
  • Information for Readers
  • Editor’s Publisher Ethics
  • Contacts
  • Manuscript submission
  • Received articles
  • Accepted articles
  • Subscribe
  • Service Entrance
vestnik.tspu.edu.ru
praxema.tspu.edu.ru
ling.tspu.edu.ru
npo.tspu.edu.ru
edujournal.tspu.edu.ru

TSPU Bulletin is a peer-reviewed open-access scientific journal.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
DOAJ (Directory of Open Access Journals)
Search by Author
- Not selected -
  • - Not selected -
Яндекс.Метрика

FINITE BRST-ANTIBRST TRANSFORMATIONS FOR THE THEORIES WITH GAUGE GROUP

Moshin P. Ju., Reshetnyak A. A.

Information About Author:

Following our recent results [P. Yu. Moshin, A. A. Reshetnyak, Nucl. Phys. B 888 (2014) 92], we discuss the notion of finite BRST-antiBRST transformations, with a doublet λa, a = 1, 2, of anticommuting (both global and field-dependent) Grassmann parameters. We find an explicit Jacobian corresponding to this change of variables in the theories with gauge group. Special field-dependent BRST-antiBRST transformations for the Yang-Mills path integral with sa-potential (functionally-dependent) parameters λa = saΛ generated by a finite even-valued functional Λ and the anticommuting generators sa of BRST-antiBRST transformations, amount to a precise change of the gauge-fixing functional. This proves the independence of the vacuum functional under such BRST-antiBRST transformations and leads to presence of modified Ward identities. The form of transformation parameters that induces a change of the gauge in the path integral is found and is exactly evaluated for connecting two arbitrary Rξ-like gauges. The finite field-dependent BRST-antiBRST transformations are used to generalize the Gribov horizon functional h0, in the Landau gauge in BRST-antiBRST setting, in the Gribov– Zwanziger model and to find hξ corresponding to general Rξ-like gauges in the form compatible with gauge-independent S-matrix.

Keywords: gauge theories, BRST-antiBRST Lagrangian quantization, Yang-Mills theory, Gribov–Zwanziger model, field-dependent BRST-antiBRST transformations

References:

[1] Becchi C., Rouet A. and Stora R. 1974 Phys. Lett. B 52 344.

[2] Tyutin I. V. 1975 Lebedev Inst. preprint No. 39 [arXiv:0812.0580[hep-th]].

[3] Curci G. and Ferrari R. 1976 Phys. Lett. B 63 91.

[4] Alvarez-Gaume L. and Baulieu L. 1983 Nucl. Phys. B 212 255.

[5] Spiridonov V. P. 1988 Nucl. Phys. B 308 527.

[6] Gitman D. M. and Tyutin I. V. 1990 Quantization of Fields with Constraints (Springer) 291 p.

[7] Faddeev L. D. and Slavnov A. A. 1990 Gauge Fields, Introduction to Quantum Theory (Benjamin, Reading) 232 p.

[8] Batalin I. A., Lavrov P. M. and Tyutin I. V. 1990 J. Math. Phys. 31 6.

[9] Batalin I. A., Lavrov P. M. and Tyutin I. V., 1990 J. Math. Phys. 31 1487.

[10] Batalin I. A., Lavrov P. M. and Tyutin I. V., 1991 J. Math. Phys. 32 532.

[11] Hull C. M. 1990 Mod. Phys. Lett. A 5 1871.

[12] Joglekar S. D. and Mandal B. P. 1995 Phys. Rev. D 51 1919.

[13] Faddeev L. D. and Popov V. N. 1967 Phys. Lett. B 25 29.

[14] Lavrov P. and Lechtenfeld O. 2013 Phys. Lett. B 725 382 [arXiv:1305.0712[hep-th]].

[15] Gribov V. N., 1978 Nucl. Phys. B 139 1.

[16] Zwanziger D., 1989 Nucl. Phys. B 323 513.

[17] Sobreiro R. F. and Sorella S. P. 2005 JHEP 0506 054 [arXiv:hep-th/0506165].

[18] Dudal D., Capri M. A. L., Gracey J. A. et al. 2007 Braz. J. Phys. 37 320 [arXiv:1210.5651[hep-th]].

[19] Capri M. A. L., Granado D. R., Guimaraes M. S. et al. 2014 Phys. Rev. D [arXiv:1404.2573 [hep-th]].

[20] Gongyo S. and Iida H. 2014 Phys. Rev. D 89 [arXiv:1310.4877[hep-th]].

[21] Dudal D., Gracey J. A., Sorella S. P. et all, 2008 Phys. Rev. D 78 065047 [arXiv:0806.0348[hep-th]].

[22] Fradkin E. S. and Vilkovisky G. A. 1975 Phys. Lett. B 55 224; Batalin I. A. and Vilkovisky G. A. 1977 Phys. Lett. B 69 309.

[23] Henneaux M. 1985 Phys. Pep. 126 1.

[24] Batalin I. A., Lavrov P. M. and Tyutin I. V. 2014 Int. J. Mod. Phys. A [arXiv:1404.4154[hep-th]].

[25] Batalin I. A. and Vilkovisky G. A. 1981 Phys. Lett. B 102 27.

[26] Reshetnyak A. A. 2014 Int. J. Mod. Phys. A 29 1450184, [arXiv:1312.2092[hep-th]].

[27] Lavrov P., Lechtenfeld O. and Reshetnyak A. 2011 JHEP 1110 043.

[28] Moshin P. Yu. and Reshetnyak A. A. 2014 Nucl. Phys. B 888 92 [arXiv:1405.0790 [hep-th]].

[29] Moshin P. Yu. and Reshetnyak A. A. 2014 Phys. Lett B 739 110 [arXiv:1406.0179[hep-th]].

[30] Moshin P. Yu. and Reshetnyak A. A. [arXiv:1406.5086 [hep-th]].

[31] Moshin P. Yu. and Reshetnyak A. A. 2014 Int. J. Mod. Phys. A 29 1450159 [arXiv:1405.7549 [hep-th]].

[32] Batalin I. A., Lavrov P. M. and Tyutin I. V., [arXiv:1405.7218[hep-th]].

moshin_p._ju._192_197_12_153_2014.pdf ( 628.31 kB ) moshin_p._ju._192_197_12_153_2014.zip ( 509.83 kB )

Issue: 12, 2014

Series of issue: Issue 12

Pages: 192 — 197

Downloads: 609

For citation:


© 2023 Tomsk State Pedagogical University Bulletin

Development and support: Network Project Laboratory TSPU