АКТИВНОСТЬ ЭНЗИМОВ В ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССАХ НА ДВУХ ГЛУБИНАХ ТАГАНСКОГО БОЛОТА
Редокс потенциал – важный фактор влияния окружающей среды на биологическую среду почв. Подвижный и общий углерод, общий азот и активность отдельных ферментов были определены в торфяных образцах. Цель проведенных исследований – сравнение активности энзимов, участвующих в окислительно-восстановительных процессах по двум глубинам в торфяной залежи Таганского болота, соответствующим деятельному и инертному слою. Исследования показали различие окислительно-восстановительных процессов на разных глубинах профиля болота. Активность ферментов возрастала с глубиной в пунктах 2–4. С углублением происходило увеличение активности нитратредуктазы в пунктах 1, 3 и снижение ее активности в пунктах 2, 4.
Ключевые слова: торфяные почвы, активность ферментов, нитратредуктаза, пероксидаза, фенолоксидаза
Библиография:
1. Harrison R. M. Understanding our Environment: an Introduction to Environmental Chemistry and Pollution. Birmingham, 1992. 326 p.
2. GliDski J., Sahr K., Stpniewska Z., BrzeziDska M. Changes of redox and pH conditions in flooded soil amended with glucose and manganese oxide under laboratory conditions // Z. Planzenenernдhr. Bodenk, 1996. № 155. P. 13–17.
3. Tan K. H. Chemical Processes. In Benbi D.K.,l Nieder R. (eds): Handbook of Processes and Modeling in the Soil-Plant System. N. Y., 2003. 762 p.
4. Ingram H. A. P. Soil layers in mires: function and terminology // J. Soil Sci. 1978. № 29. P. 224–227.
5. Moore P. D. Biological processes controlling the development of modern peat-forming ecosystems // Int. J. Coal Geol. 1995. № 28. P. 99–110.
6. Bragg O. M., Tallis J. H. The sensitivity of peat-covered upland landscapes // Catena. 2001. № 42. P. 345–360.
7. Daniels S. M., Agnew C. T., Allot T. E. H., Evans M. G. Water table variability and runoff generation in an eroded peatland // South Pennines, UK. J. Hydrol. 2008. № 361. P. 214–226.
8. Bonnett S. A. F., Ostle N., Freeman Ch. Seasonal variations in decomposition processes in a valley-bottom riparian peatland // Sci. Total Environ. 2006. № 370. P. 561–573.
9. Gondar D., Lopez R., Fiol S. et al. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat dog // Geoderma. 2005. № 126. P. 367–374.
10. Fimmen R. L., Cory R. M., Chin Y. P. et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter // Geochim. Cosmochim. Acta. 2007. № 71. P. 3003–3015.
11. Insam H. Are the soil microbial biomass and basal respiration govemed by the climatic regime? // Soil Biol. Biochem. 1990. № 22. P. 525–532.
12. Freeman C., Liska G., Ostle N. et al. Microbial activity and enzymic decomposition processes following peatland water table drawdown // Plant and Soil. 1996. № 180. P. 121–127.
13. Kandeler E. Nitrate reductase activity. In Schinner F., Цhlinger R., Kandeler E., Margesin R. (eds): Methods in soil biology. Berlin-Heidelberg, 1996. P. 176–179.
14. KrawczyDski J. Enzymology Diagnosis in Medical Practice. Warszawa, 1972. P. 182–184. (in Polish).
15. Perucci P., Casucci C., Dumontet S. An improved method to evaluate the o-diphenol oxidase activity of soil // Soil Biol. Biochem. 2000. № 32. P. 1927–1933.
16. Bartha R., Bordeleau L. Cell-free peroxidases in soil // Soil Biol. Biochem. 1969. № 1. P. 139–143.
17. Worral F., Burt T. Predicting the future DOC flux from upland peat catchments // J. Hydrobiol. 2005. № 300. P. 126–139.
18. Qualls R. G., Haines B. L. Biodegradability of dissolved organic matter in forest throughfall, soil solution and stream water // Soil Sci. Soc. Am. J. 1992. № 56. P. 578–586.
19. Marschner B., Bredow A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon and biologically active soil samples // Soil Biol. Biochem. 2002. № 34. P. 459–466.
20. Dou F., Wright A. L., Hons F. M. Depth distribution of soil organic C and N after long-term soybean cropping in Texas // Soil Till. Res. 2007. № 94. P. 530–536.
21. Zaccone C., Miano T. M., Shotyk W. Qualitative comparison between raw peat and related humic acid in an ombrotrophic bog profile // Org. Geochem. 2007. № 38. P. 151–160.
22. Kuhry P., Vitt D. H. Fossil carbon/nitrogen ratios a measure of peat decomposition // Ecology. 1996. № 77/1. P. 271–275.
23. Salimin M. I., Gandaseca S., Ahmed O. H., Majid N. M. A. Comparison of selected chemical properties of peat swamp soil before and after timber harvesting // Am. J. Environ. Sci. 2010. № 6/2. P. 164–167.
24. Boyer J. N., Groffman P. M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles // Soil Biol. Biochem. 1996. № 28/6. P. 783–790.
25. Fu M. H., Tabatabai M. A. Nitrate reductase activity in soils: effects of trace elements // Soil Biol. Biochem. 1989. № 21. P. 943–946.
26. Ma R. X. Effects of allelochemicals on activity of nitrate reductase // J. Environ. Sci. 2000. № 12. P. 125–128.
27. Lescure C., Mendendes L., Lensi R. et al. Effect of addition of various carbon substrates on dentrification in a vertic Mollsoil // Biol. Fertil. Soils. 1992. № 13. P. 125–129.
28. Fried R., Fried L. W. Xanthine oxidase (Xanthine dexydrogenase). In Bergmeyer H. U. (ed.): Methods of enzymatic analisis. V. 2. 1983. P. 644–649.
29. Hille R., Massey V. Molybdenum – containing hydroxylases: xanthine oxidaes, aldehyde oxidase, and sulfite oxidase. In Thomas S. (ed.): Molybdenum enzymes. N. Y., 1985. P. 443–518.
30. Fujimoto Y., Sakuma S., Tagami T. et al. N-ethylmaleimide inhibits xanthine oxidase activity with no detectable change in xanthine dehydrogenase activity in rabbit liver // Life Sci. 2000. № 68. P. 517–524.
31. Freeman C., Ostle N. J., Fener N., Kang H. A regulatory role for phenol oxidase during decomposition in peatlands // Soil Biol. Biochem. 2004. № 36. P. 1663–1667.
32. Benitez E., Nogales R., Campos M., Ruano F. Biochemical variability of olive-orchard soils under different management systems // Appl. Soil Ecol. 2006. № 32. P. 221–231.
33. Matocha Ch. J., Haszler G. R., Grove J. H. Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems // Soil Sci. 2004. № 169/10. P. 708–14.
34. Bollag J. M., Chen Ch. M., Sarkar J. M., Loll M. Extraction and purification of a peroxidase from soil // Soil Biol. Biochem. 1987. № 19/1. P. 61–67.
35. Nicell J. A., Wright H. A model of peroxidase activity with inhibition by hydrogen peroxide // Enzym. Microb. Tech. 1997. № 21. P. 302–310.
36. Choinowski T., Blodig W., Winterhalter K. H., Piontek K. The crystal structure of lignin peroxidase at 1.70Е resolution reveals a hydroxyl group on the Cb of tryptophan 171: a novel radical site formed during the redox cycle // J. Mol. Biol. 1999. № 286. P. 809–827.
37. Criquet S., Farnet A. M., Tagger S., Le Petit J. Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain of certainbiotic and abiotic factors // Soil Biol. Biochem. 2000. № 32. P. 1505–1513.
38. Dec J., Haider K., Bollag J. M. Release of substituents from phenolic compounds during oxidative coupling reactions // Chemosphere. 2003. № 52. P. 549–556.
39. Kerstetter R. E., Zepp R. G., Carreira L. H. Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter // Biogeochemistry. 1998. № 42. P. 311–323.
40. Dec J., Haider K., Bollag J. M. Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization // Soil Sci. 2001. № 166/10. P. 660–671.
41. Gostishcheva M. V., Inisheva L. I., Shchegolikhina A. I. Futures of organic matter of peat soils of mire Tagan Tomsk region // Tomsk State Pedagogical University Bulletin. 2010. Issue 3. P. 114–120.
42. Sergeeva M. A., Inisheva L. I. Biochemical processes in oligotrophic landscapes vasjugan bog // Tomsk State Pedagogical University Bulletin. 2008. Issue 4. P. 57–64.
Выпуск: 8, 2011
Серия выпуска: Выпуск № 8
Рубрика: Biology
Страницы: 70 — 77
Скачиваний: 1012