Вестник Томского государственного педагогического университета
RU EN






Сегодня: 27.01.2023
Главная ВЫПУСКИ ЖУРНАЛА 2015 Год Выпуск №2 О НЕКОТОРЫХ ЭКСТРЕМАЛЬНЫХ ЗАДАЧАХ НАИЛУЧШИХ ПРИБЛИЖЕНИЙ ЦЕЛЫМИ ФУНКЦИЯМИ
  • Главная
  • Текущий выпуск
  • ВЫПУСКИ ЖУРНАЛА
    • 2023 Год
      • Выпуск №1
    • 2022 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2021 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2020 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2019 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 2018 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
    • 2017 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2016 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2015 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2014 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2013 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2012 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2011 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2010 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2009 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2008 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2007 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
    • 2006 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2005 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2004 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2003 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
    • 2002 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2001 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
    • 2000 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 1999 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 1998 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 1997 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
  • Рейтинг
  • Поиск
  • Новости
  • Редакционная коллегия
  • Правила для авторов
  • Порядок рецензирования
  • Читателям
  • Публикационная Этика Издания
  • Контактная информация
  • Разместить статью
  • Поступившие статьи
  • Принятые в печать
  • Оформить подписку
  • Служебный вход

Журналы ТГПУ

vestnik.tspu.edu.ru
praxema.tspu.edu.ru
ling.tspu.edu.ru
npo.tspu.edu.ru
edujournal.tspu.edu.ru

Вестник ТГПУ - это рецензируемый научный журнал открытого доступа.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
DOAJ (Directory of Open Access Journals)
Поиск по автору
- Не выбрано -
  • - Не выбрано -
Яндекс.Метрика

О НЕКОТОРЫХ ЭКСТРЕМАЛЬНЫХ ЗАДАЧАХ НАИЛУЧШИХ ПРИБЛИЖЕНИЙ ЦЕЛЫМИ ФУНКЦИЯМИ

Тухлиев К.

Информация об авторе:

В статье решается ряд экстремальных задач теории аппроксимации функций, суммируемых с квадратом на всей прямой R : = (–∞,+∞) – посредством целых функций экспоненциального типа. Так, в пространстве L2(R) вычислены точные константы в неравенствах типа Джексона–Стечкина. А также найдены точные верхние грани приближения классов функций из L2(R), определенных при помощи осредненных модулей непрерывности m-го порядка, где вместо оператора сдвига ( , ): ( ) h T f x = f x + h используется оператор Стеклова Sh ( f ).

Ключевые слова: наилучшие приближения, модуль непрерывности m-го порядка, неравенство Джексона–Стечкина, целая функция экспоненциального типа, оператор Стеклова

Библиография:

1. Бернштейн С. Н. О наилучшем приближении непрерывных функций на всей вещественной оси при помощи целых функций данной степени // Собрание сочинений. Т. II. М.: АН СССР. 1952. С. 371–375.

2. Ахиезер Н. И. Лекции по теории аппроксимации. М.: Наука, 1965. 406 c.

3. Никольский С. М. Приближение функций многих переменных и теоремы вложения. М.: Наука, 1969. 480 с.

4. Тиман А. Ф. Теория приближения функций действительного переменного. М.: Физматгиз, 1960. 624 с.

5. Ибрагимов И. И. Теория приближения целыми функциями. Баку: Элм, 1979. 468 с.

6. Ибрагимов И. И., Насибов Ф. Г. Об оценке наилучшего приближения суммируемой функции на вещественной оси посредством целых функций конечной степени // ДАН СССР. 1970. Т. 194. № 5. С. 1013–1016.

7. Попов В. Ю. О наилучших среднеквадратических приближениях целыми функциями экспоненциального типа // Изв. вузов. Математика. 1972. № 6. С. 65–73.

8. Магарил-Ильяев Г. Г. Средняя размерность, поперечники и оптимальное восстановление соболевских классов функций на прямой // Мат. сборник. 1991. Т. 182. № 11. С. 1635–1656.

9. Магарил-Ильяев Г. Г. Средняя размерность и поперечники классов функций на прямой // ДАН СССР. 1991. Т. 318. № 1. С. 35–38.

10. Вакарчук С. Б., Доронин В. Г. Наилучшие среднеквадратические приближения целыми функциями конечной степени на прямой и точные значения средних поперечников функциональных классов // Укр. мат. журнал. 2010. Т. 62. № 8. С. 1032–1043.

11. Вакарчук С. Б. О некотрых экстремальных задачах теории аппроксимации функций на вещественной оси I // Укр. мат. вiсник. 2012. Т. 9. № 3. С. 401–429; II, Укр. мат. вiсник. 2012, Т. 9, 4. С. 578–602.

12. Шабозов М. Ш., Мамадов Р. Наилучшее приближение целыми функциями экспоненциального типа в L2 (R) // Вестник Хорогского госуниверситета. 2001. № 4. С. 76–81.

13. Шабозов М. Ш., Вакарчук С. Б., Мамадов Р. О точных значениях средних n-поперечников некоторых классов функций // ДАН РТ. 2009. Т. 52. № 4. С. 247–254.

14. Шабозов М. Ш., Юсупов Г. А. О точных значениях средних n-поперечников некоторых классов целых функций // Труды Инст. матем. и мех. УрО РАН. 2012. Т. 18. № 4. С. 315–327.

15. Лигун А. А. Некоторые неравенства между наилучшими приближениями и модулями непрерывности в пространстве L2 // Матем. заметки. 1978. Т. 24. № 6. С. 785–792.

16. Шабозов М. Ш., Юсупов Г. А. Наилучшие полиномиальные приближения в L2 некоторых классов 2π-периодических функций и точные значения их поперечников // Матем. заметки. 2011. Т. 90. № 5. С. 764–775.

17. Hardy G. G., Littlewood J. E. and Polya G. Inequality. Cambridge University Press. 2nd ed. 1952. 346 p.

18. Бекенбах Э., Беллман Р. Неравенства. М.: Мир, 1965. 276 c.

tukhliyev_k._213_220_2_155_2015.pdf ( 503.94 kB ) tukhliyev_k._213_220_2_155_2015.zip ( 495.04 kB )

Выпуск: 2, 2015

Серия выпуска: Выпуск № 2

Рубрика: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ

Страницы: 213 — 220

Скачиваний: 592

Для цитирования:


© 2023 Вестник Томского государственного педагогического университета

Разработка и поддержка: Лаборатория сетевых проектов ТГПУ