Вестник Томского государственного педагогического университета
RU EN






Сегодня: 28.01.2023
Главная ВЫПУСКИ ЖУРНАЛА 2015 Год Выпуск №2 НАИЛУЧШИЕ СРЕДНЕКВАДРАТИЧЕСКИЕ ПРИБЛИЖЕНИЯ ЦЕЛЫМИ ФУНКЦИЯМИ И ЗНАЧЕНИЯ СРЕДНИХ ПОПЕРЕЧНИКОВ НЕКОТОРЫХ ФУНКЦИОНАЛЬНЫХ КЛАССОВ
  • Главная
  • Текущий выпуск
  • ВЫПУСКИ ЖУРНАЛА
    • 2023 Год
      • Выпуск №1
    • 2022 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2021 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2020 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2019 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 2018 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
    • 2017 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2016 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2015 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2014 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2013 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2012 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2011 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2010 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2009 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2008 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2007 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
    • 2006 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2005 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2004 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2003 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
    • 2002 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2001 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
    • 2000 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 1999 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 1998 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 1997 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
  • Рейтинг
  • Поиск
  • Новости
  • Редакционная коллегия
  • Правила для авторов
  • Порядок рецензирования
  • Читателям
  • Публикационная Этика Издания
  • Контактная информация
  • Разместить статью
  • Поступившие статьи
  • Принятые в печать
  • Оформить подписку
  • Служебный вход

Журналы ТГПУ

vestnik.tspu.edu.ru
praxema.tspu.edu.ru
ling.tspu.edu.ru
npo.tspu.edu.ru
edujournal.tspu.edu.ru

Вестник ТГПУ - это рецензируемый научный журнал открытого доступа.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
DOAJ (Directory of Open Access Journals)
Поиск по автору
- Не выбрано -
  • - Не выбрано -
Яндекс.Метрика

НАИЛУЧШИЕ СРЕДНЕКВАДРАТИЧЕСКИЕ ПРИБЛИЖЕНИЯ ЦЕЛЫМИ ФУНКЦИЯМИ И ЗНАЧЕНИЯ СРЕДНИХ ПОПЕРЕЧНИКОВ НЕКОТОРЫХ ФУНКЦИОНАЛЬНЫХ КЛАССОВ

Тухлиев К.

Информация об авторе:

В работе решается ряд экстремальных задач о наилучшем среднеквадратическом приближении функций заданной на всей действительной оси R := (−∞,+∞) целыми функциями экспоненциального типа σ > 0 . Вычислены точные неравенства между величиной наилучших приближений 2 f ∈L (R) и интегралами, содержащими специальные модули непрерывности m-го порядка, связанные с оператором Стеклова, введенные в работе В. А. Абилова и Ф. В. Абиловой. Найдены точные значения средних поперечников, введенные Г. Г. Магарил-Ильяевым для классов функций ( ) 2 f ∈L r (R), удовлетворяющих условию – обобщенный модуль непрерывности m-го порядка производной – произвольная возрастающая функция, Φ(0) = 0.

Ключевые слова: наилучшие приближения, преобразование Фурье, модуль непрерывности m-го порядка, характеристическая функция, целая функция экспоненциального типа, средние ν-поперечники

Библиография:

1. Тухлиев К. О наилучших приближениях целыми функциями в пространстве L2 (R). I // Известия АН РТ, отд. физ.-мат., хим., геол. и тех. н., 2013, № 3 (152), С. 19–29.

2. Вакарчук С. Б. О некоторых экстремальных задачах теории аппроксимации функций на вещественной оси II // Укр. матем. вiсник, 2012, Т. 9, № 4, С. 578–602.

tukhliyev_k._229_231_2_155_2015.pdf ( 416.64 kB ) tukhliyev_k._229_231_2_155_2015.zip ( 410.15 kB )

Выпуск: 2, 2015

Серия выпуска: Выпуск № 2

Рубрика: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ

Страницы: 229 — 231

Скачиваний: 531

Для цитирования:


© 2023 Вестник Томского государственного педагогического университета

Разработка и поддержка: Лаборатория сетевых проектов ТГПУ