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The NSVZ scheme is constructed in all orders for the renormalization group functions defined in terms of the renormalized
coupling constant for Abelian A/ = 1 supersymmetric theories regularized by higher derivatives. For the other renormalization
prescriptions the scheme-independent consequences of the NSVZ relation are investigated. It is explained, why for the
renormalization group functions defined in terms of the bare coupling constant the NSVZ relation is valid for all renormalization
prescriptions in the case of using the higher derivative regularization.
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1 Introduction

The NSVZ p-function [1-4] is a relation between
the B-function of N' = 1 supersymmetric theories and
the anomalous dimensions of the matter superfields:

a® (302 ~T(R) + C(R)ij'}/ji(a)/r>

flea) = - 27(1 — Char/27) '

(1)

Here we use the notation

tr (TAT?) = T(R) 645,
fACDfBCD = CQ(SAB'

(T (T = C(R);
r = 5AA~

(2)

For the particular case of N/ = 1 supersymmetric
electrodynamics (SQED) with Ny flavors the NSVZ
B-function takes the form [5,6]

2
Bla) = 2 (1 - (). 3)
The NSVZ p-function was constructed using various
general arguments: structure of instanton contributions
[1, 3, 7], anomalies [2, 4, 8], the non-renormalization
theorem for the topological term [9].

The NSVZ expression can be compared with the
results of explicit calculations which in supersymmetric
theories are mostly made using the regularization
by the dimensional reduction [10]. (It should be
noted that this regularization is either mathematically
inconsistent [11], or is not manifestly supersymmetric
[12] and can break supersymmetry in higher loops [13,
14].) Using the dimensional reduction supplemented
by the DR-scheme the B-function for general N/ =
1 supersymmetric theories was calculated up to the
four-loop approximation [15-18]. The NSVZ g-function

supersymmetry, renormalization, S-function, anomalous dimension.

agrees with these calculations only in the one- and two-
loop approximations. In the higher loops it is obtained
only after a specially tuned finite renormalization
[16,19].

It appears that a very convenient tool for
calculating quantum corrections in supersymmetric
theories is the higher covariant derivative
regularization [20, 21]. (It also includes the Pauli-
Villars regularization for removing the one-loop
divergences [22,23].) Unlike the dimensional reduction,
it is consistent and (if it is used for supersymmetric
theories) does not break supersymmetry [24,25]. This
regularization can be also formulated for NV = 2
supersymmetric theories [26,27].

The explicit calculations made with the higher
derivative regularization in N' = 1 supersymmetric
theories reveal an interesting feature of quantum
corrections: integrals giving the (S-function defined
in terms of the bare coupling constant are integrals
of (double) total derivatives [28,29]. (Note that in
these integrals the external momentum vanishes.)
The NSVZ relation appears after calculating the
momentum integral of a total derivative. For Abelian
supersymmetric theories this was proved exactly in all
orders [30, 31].

However, the renormalization group (RG) functions
defined by the standard way in terms of the
renormalized coupling constant [32] are scheme
dependent. They satisfy the NSVZ relation only with a
certain subtraction scheme, which is called the NSVZ
scheme.

At present there is no general prescription how to
construct this scheme in all orders with the dimensional
reduction. However this can be easily done using the
higher derivative regularization [33]. In the present
paper we describe how this can be made.
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2 N =1 SQED with N; flavors, regularized
by higher derivatives

In this paper we consider N' = 1 SQED with Ny
flavors which is described by the action

Ny
S iRe/d‘ixd?e Wew, +Zi/d4xd49

- 4e?
(4)

in the massless limit. Here V' is a real gauge superfield,
¢o and ¢, with o = 1,...,N; are chiral matter
superfields. In the Abelian case W, = D?D,V/4. In
order to introduce the higher derivative regularization
we add the higher derivative term S to the classical
action:

% (662 du+ dae b0,

Sreg =S+ Sh, (5)

where

1

Sy = —
A 4e?

Re / d'zd®0W* (R(O*/A*) - 1) W,  (6)
and the function R — 1 contains the large degree of
derivatives. A convenient choice of this function is
R=1+0>"/A*".

By introducing S, one regularizes all divergences
beyond the one-loop approximation. The remaining
one-loop divergencies can be removed by inserting
the Pauli-Villars determinants into the generating
functional [23]:

Z[J,9) = /D,u, [1( det PV(V,017)) e
I

X €eXp {iSreg + ngf + SSources}~ (7)
We require that the degrees of the Pauli-Villars
determinants ¢y satisfy the constrains

ZC[:].; ZC]M?ZO
I I

due to which the remaining one-loop divergences
cancel. The masses of the Pauli-Villars fields are chosen
proportional to the parameter A, the ratios being
independent of the bare coupling constant:

(8)

M[Z(l[A, aj;éa](eo).

(9)

Let us define the functions d~'(ag,A/p) and

G(ap, A/p) according to the following equation:

d*p 1
2 4 2
r® — / Gy 9(— V(P 0) 0

Ny
1
—1 - *(_
XV(pa o)d (0407A/p) + 43:1 (¢a( D, 9)
X0(p,0) + Ga (=1, 0)6a(p.6)) Glao, A/p)),  (10)
where T® is a part of the effective action

corresponding to the two-point Green functions
and 82H1/2 denotes a supersymmetric transversal
projection operator.

In order to construct the renormalized coupling
constant  «a(ap,A/pu)  we require finiteness of
d Y ag(a, A/p),A/p) in the limit A — oo. The
renormalization constant Z3 is then defined by

o

Zs(a,A/p) = —. (11)
Qo

Similarly, the renormalization constant 2 is

constructed by requiring finiteness of the renormalized
two-point Green function ZG in the limit A — oo.

3 NSVZ relation for the RG functions defined
in terms of the bare coupling constant

The RG functions can be defined in terms of
the bare coupling constant according to the following
prescription:

da
ﬂ (Oéo (a7 A/,LL)) = d h’lOA a:const; (12)
: dln Z;7
’yij (ao(a, A/'u)) =" dlnA a:const7 (13)

where the derivatives should be calculated at a
fixed value of the renormalized coupling constant.
It is possible to prove [33] that these RG functions
are scheme independent for a fixed regularization,
but depend on the regularization. Moreover, in
all loops they satisfy the NSVZ relation for
Abelian supersymmetric theories, regularized by higher
derivatives [30, 31].

The NSVZ relation appears, because with the
higher covariant derivative regularization loop integrals
giving the [-function defined in terms of the bare
coupling constant are integrals of total derivatives [28]
and even integrals of double total derivatives [29]. (In
these integrals the external momentum vanishes, p =
0.) As a consequence, one of the momentum integrals
can be calculated analytically, producing the NSVZ
relation for the RG functions defined in terms of the
bare coupling constant:
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Similar features are also valid in the non-Abelian case,
but the calculations have been done only in the two-
loop approximation [34-36].

(14)

4 The NSVZ
derivatives

scheme with the

higher

In the previous section we consider the RG function
defined in terms of the bare coupling constant.
However, by standard way the RG functions are defined
in terms of the renormalized coupling constant [32]:

~ do

A _ . 15
6(04(040, /M)> dIn p1lao=const’ 19)
B dln Z;7
o (a(ao, A/M)) = dlnp lag=const’ (19

(In order to obtain these functions it is necessary to
express the RHS via «g and calculate the derivatives
at a fixed value of the bare coupling constant.) The
RG functions (15) and (16) are scheme-dependent.
According to [33, 37] they coincide with the RG
functions defined in terms of the bare coupling
constant, if the boundary conditions

Zg(a,mo) = 1; Zij(a,mo) =1 (17)
are imposed on the renormalization constants, where

xo is an arbitrary fixed value of In A/p:

(18)

_ Due to the scheme-dependence the RG functions
B(a) and (o) satisfy the NSVZ relation only in a
certain subtraction scheme, called the NSVZ scheme.
This scheme is evidently fixed in all loops by the
boundary conditions (17) if the theory is regularized
by higher derivatives, because the functions § and ~
satisfy the NSVZ relation in the case of using this
regularization.

the

5 RG functions in

approximation

three-loop

Using the higher derivative regularization with
Ry = 1+ k®>*/A?" one can calculate the B-function

and the anomalous dimension in the three- and two-
loop approximations, respectively. Let us present the
results for various definitions of the RG functions and
in various subtraction schemes.

The RG functions defined in terms of the bare
coupling constant coincide with the RG functions
defined in terms of the renormalized coupling constant
in the NSVZ scheme and are given by the following
expressions:

nsva(e) =7(0) - &+ (5 + 1 Izc, Ina;

=1
+N7) + O(a®); (19)
Brsvalo) = Bo) TN (142 - (Lo,
xicl lnaIJer) +O(a3)). (20)

I=1

We see that in this scheme the NSVZ relation is really
satisfied in the considered approximation.

Let us also present the results for the RG functions
defined in terms of the renormalized coupling constants
for other subtraction schemes.

In the MOM scheme the dimensional reduction
and the higher derivative regularizations give the same
result [37]

Fuom(a) = -2+ LI Lo o)
Buiom (@) = N (1 + % - ;7-22(1 + 3Ny
X (1-¢(3))) +0(a%). (22)

In the DR-scheme the result was obtained in Ref. [16]
and is written as

« a2
omla) =~ 2+ CEEN L o) (23)
~ 0[2 « a2
Bome(a) = 22 (1+——%+0(a3’)).

Comparing all above expressions one can see that in
the considered approximations only terms proportional
to (Nf)?a’ in the SB-function and to Nya? in the
anomalous dimension are scheme dependent. The other
terms coincide in all schemes.

6 The NSVZ
renormalizations

relation and finite

Different renormalization prescriptions can be
related by finite renormalizations
Z'" (o N p) = z2(a) Z(a, A ),

a— a(a); (24)
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under which the g-function (15) and the anomalous
dimension (16) are changed as follows:

_da’ ~

= Eﬁ(a);

(o) = T2 Ba) (). (25)

Using these equations one can see [37] that if B(a) and
() satisfy the NSVZ relation, then
_da’ o*Ny 1—7'()
1—0a?Ny(dlnz/do)/m

B (o)

a:a(a’).

Taking into account that quantum corrections to the
coupling constant are proportional at least to Ny we
obtain

a'(a) —a = O(Ny); z(a) = O ((Ny)?) .

Therefore, all scheme-dependent terms in the -
function are proportional at least to (Nf)2 in all loops,
while the terms proportional to (N;)? in the anomalous
dimension are scheme-independent. This means that
the NSVZ relation is valid for terms proportional to
(N f)1 in all orders. Nevertheless, terms proportional
to (N§)® with « > 2 are scheme-dependent.

Similarly making finite renormalizations in the non-
Abelian case one can see [38] that in L loops terms
proportional to tr (C(R)*) satisfy the NSVZ relation
for an arbitrary renormalization prescription. This
implies that the NSVZ relation non-trivially constrains
the divergences in spite of its scheme-dependence.

(26)

7 Conclusion

For Abelian supersymmetric theories, regularized
by higher derivatives, the NSVZ g-function relates the
scheme-independent RG functions defined in terms of
the bare coupling constant. The NSVZ relation follows
from the fact that the integrals which determine the /-
function defined in terms of the bare coupling constant
can be written as integrals of double total derivatives.

For the RG functions defined in terms of the
renormalized coupling constant, the NSVZ relation is
valid only in a special NSVZ scheme. In the Abelian
case the higher derivative regularization enables to give
a simple prescription for constructing this scheme in all
orders by imposing the boundary conditions (17).

Although the NSVZ relation is scheme-dependent,

it has some scheme-independent consequences which
non-trivially restrict the divergences.
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K. B. Cmenanvany,
NSVZ CXEMA " PEI'VJIAPU3AIINA BBICIIVNMU ITPON3BO/JHBIMN

st abeneBbix N = 1 CynepCUMMETPHHIHBIX TEOPHH, PETyJIAPH30BAHHBIX BRICIIAMHA TPOU3BOHBIME, NSVZ cxema mocTpoe-
Ha BO BCEX MOPSJIKAX JIJIsI PEHOPMIPYNIOBHIX (DYHKITUHN, OMPEIEIEHHBIX B TEPMIHAX IEPEHOPMUPOBAHHON KOHCTAHTHI CBSI-
3u. Jjist Apyrux nepeHOpMUPOBOYHBIX MPEANUCAHUN MCCIEAYIOTCS CXEMHO-HE3aBUCUMBIE CiieacTBus NSVZ COOTHOIIEHUS.
Ob6bsacHAeTCA, MOYEMY JAJIsI PEHOPMI'DYIIOBBIX (DYHKIIUI, ONpe/ieIeHHbIX B TEPMUHAX TOJI0M KOHCTAHTHI cBsa3u, NSVZ coot-
HOLICHUE CIIPABEAINBO IIPYW NPOU3BOJIBHBIX IIEPEHOPMHUPOBOYHEBIX IMIPEAIINCAHUAX B CJIy4Yae UCIOJIb30BAHUA DPETyIdpU3anun
BBICIIAMY TTPOU3BOTHBIMH.

KurouyeBble CJIOBa: CYNEPCuUMMEMPUs, NEPEHOPMUPOSKA, B-PYHKUUA, AHOMAABHAA PAZMEDPHOCTD.

Crenanpann K. B., KaHaugaT pu3nKo-MaTeMaTHIeCKUX HAYK, JOIIEHT.
Mockogckuii 'ocynapcrBennsiit YHusepcurer um. M. B. JlomoHocoOBa.
Jlenunckwme ropet 1, ctp. 2, 119991 Mocksa, Poccus.

E-mail: stepan@phys.msu.ru

— 242 —



