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The NSVZ scheme is constructed in all orders for the renormalization group functions de�ned in terms of the renormalized
coupling constant for AbelianN = 1 supersymmetric theories regularized by higher derivatives. For the other renormalization
prescriptions the scheme-independent consequences of the NSVZ relation are investigated. It is explained, why for the
renormalization group functions de�ned in terms of the bare coupling constant the NSVZ relation is valid for all renormalization
prescriptions in the case of using the higher derivative regularization.
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1 Introduction

The NSVZ β-function [1�4] is a relation between
the β-function of N = 1 supersymmetric theories and
the anomalous dimensions of the matter super�elds:

β(α) = −
α2
(

3C2 − T (R) + C(R)i
jγj

i(α)/r
)

2π(1− C2α/2π)
. (1)

Here we use the notation

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA. (2)

For the particular case of N = 1 supersymmetric
electrodynamics (SQED) with Nf �avors the NSVZ
β-function takes the form [5,6]

β(α) =
α2Nf
π

(
1− γ(α)

)
. (3)

The NSVZ β-function was constructed using various
general arguments: structure of instanton contributions
[1, 3, 7], anomalies [2, 4, 8], the non-renormalization
theorem for the topological term [9].

The NSVZ expression can be compared with the
results of explicit calculations which in supersymmetric
theories are mostly made using the regularization
by the dimensional reduction [10]. (It should be
noted that this regularization is either mathematically
inconsistent [11], or is not manifestly supersymmetric
[12] and can break supersymmetry in higher loops [13,
14].) Using the dimensional reduction supplemented
by the DR-scheme the β-function for general N =
1 supersymmetric theories was calculated up to the
four-loop approximation [15�18]. The NSVZ β-function

agrees with these calculations only in the one- and two-
loop approximations. In the higher loops it is obtained
only after a specially tuned �nite renormalization
[16,19].

It appears that a very convenient tool for
calculating quantum corrections in supersymmetric
theories is the higher covariant derivative
regularization [20, 21]. (It also includes the Pauli-
Villars regularization for removing the one-loop
divergences [22,23].) Unlike the dimensional reduction,
it is consistent and (if it is used for supersymmetric
theories) does not break supersymmetry [24, 25]. This
regularization can be also formulated for N = 2
supersymmetric theories [26,27].

The explicit calculations made with the higher
derivative regularization in N = 1 supersymmetric
theories reveal an interesting feature of quantum
corrections: integrals giving the β-function de�ned
in terms of the bare coupling constant are integrals
of (double) total derivatives [28, 29]. (Note that in
these integrals the external momentum vanishes.)
The NSVZ relation appears after calculating the
momentum integral of a total derivative. For Abelian
supersymmetric theories this was proved exactly in all
orders [30,31].

However, the renormalization group (RG) functions
de�ned by the standard way in terms of the
renormalized coupling constant [32] are scheme
dependent. They satisfy the NSVZ relation only with a
certain subtraction scheme, which is called the NSVZ
scheme.

At present there is no general prescription how to
construct this scheme in all orders with the dimensional
reduction. However this can be easily done using the
higher derivative regularization [33]. In the present
paper we describe how this can be made.
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2 N = 1 SQED with Nf �avors, regularized
by higher derivatives

In this paper we consider N = 1 SQED with Nf
�avors which is described by the action

S =
1

4e2
0

Re

∫
d4x d2θW aWa +

Nf∑
i=α

1

4

∫
d4x d4θ

×
(
φ∗αe

2V φα + φ̃∗αe
−2V φ̃α

)
, (4)

in the massless limit. Here V is a real gauge super�eld,
φα and φ̃α with α = 1, . . . , Nf are chiral matter
super�elds. In the Abelian case Wa = D̄2DaV/4. In
order to introduce the higher derivative regularization
we add the higher derivative term SΛ to the classical
action:

Sreg = S + SΛ, (5)

where

SΛ =
1

4e2
0

Re

∫
d4x d2θW a

(
R(∂2/Λ2)− 1

)
Wa (6)

and the function R − 1 contains the large degree of
derivatives. A convenient choice of this function is
R = 1 + ∂2n/Λ2n.

By introducing SΛ one regularizes all divergences
beyond the one-loop approximation. The remaining
one-loop divergencies can be removed by inserting
the Pauli-Villars determinants into the generating
functional [23]:

Z[J,Ω] =

∫
Dµ

∏
I

(
detPV (V,MI)

)Nf cI
× exp

{
iSreg + iSgf + SSources

}
. (7)

We require that the degrees of the Pauli-Villars
determinants cI satisfy the constrains

∑
I

cI = 1;
∑
I

cIM
2
I = 0 (8)

due to which the remaining one-loop divergences
cancel. The masses of the Pauli-Villars �elds are chosen
proportional to the parameter Λ, the ratios being
independent of the bare coupling constant:

MI = aIΛ, aI 6= aI(e0). (9)

Let us de�ne the functions d−1(α0,Λ/p) and
G(α0,Λ/p) according to the following equation:

Γ(2) =

∫
d4p

(2π)4
d4θ

(
− 1

16π
V (−p, θ) ∂2Π1/2

×V (p, θ)d−1(α0,Λ/p) +
1

4

Nf∑
α=1

(
φ∗α(−p, θ)

×φα(p, θ) + φ̃∗α(−p, θ)φ̃α(p, θ)
)
G(α0,Λ/p)

)
, (10)

where Γ(2) is a part of the e�ective action
corresponding to the two-point Green functions
and ∂2Π1/2 denotes a supersymmetric transversal
projection operator.

In order to construct the renormalized coupling
constant α(α0,Λ/µ) we require �niteness of
d−1(α0(α,Λ/µ),Λ/p) in the limit Λ → ∞. The
renormalization constant Z3 is then de�ned by

Z3(α,Λ/µ) ≡ α

α0
. (11)

Similarly, the renormalization constant Z is
constructed by requiring �niteness of the renormalized
two-point Green function ZG in the limit Λ→∞.

3 NSVZ relation for the RG functions de�ned
in terms of the bare coupling constant

The RG functions can be de�ned in terms of
the bare coupling constant according to the following
prescription:

β
(
α0(α,Λ/µ)

)
≡ dα0

d ln Λ

∣∣∣
α=const

; (12)

γi
j
(
α0(α,Λ/µ)

)
≡ −d lnZi

j

d ln Λ

∣∣∣
α=const

, (13)

where the derivatives should be calculated at a
�xed value of the renormalized coupling constant.
It is possible to prove [33] that these RG functions
are scheme independent for a �xed regularization,
but depend on the regularization. Moreover, in
all loops they satisfy the NSVZ relation for
Abelian supersymmetric theories, regularized by higher
derivatives [30,31].

The NSVZ relation appears, because with the
higher covariant derivative regularization loop integrals
giving the β-function de�ned in terms of the bare
coupling constant are integrals of total derivatives [28]
and even integrals of double total derivatives [29]. (In
these integrals the external momentum vanishes, p =
0.) As a consequence, one of the momentum integrals
can be calculated analytically, producing the NSVZ
relation for the RG functions de�ned in terms of the
bare coupling constant:
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β(α0)

α2
0

=
d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

=
Nf
π

(
1− d

d ln Λ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=
Nf
π

(
1− γ(α0)

)
. (14)

Similar features are also valid in the non-Abelian case,
but the calculations have been done only in the two-
loop approximation [34�36].

4 The NSVZ scheme with the higher
derivatives

In the previous section we consider the RG function
de�ned in terms of the bare coupling constant.
However, by standard way the RG functions are de�ned
in terms of the renormalized coupling constant [32]:

β̃
(
α(α0,Λ/µ)

)
≡ dα

d lnµ

∣∣∣
α0=const

; (15)

γ̃i
j
(
α(α0,Λ/µ)

)
≡ d lnZi

j

d lnµ

∣∣∣
α0=const

. (16)

(In order to obtain these functions it is necessary to
express the RHS via α0 and calculate the derivatives
at a �xed value of the bare coupling constant.) The
RG functions (15) and (16) are scheme-dependent.
According to [33, 37] they coincide with the RG
functions de�ned in terms of the bare coupling
constant, if the boundary conditions

Z3(α, x0) = 1; Zi
j(α, x0) = 1 (17)

are imposed on the renormalization constants, where
x0 is an arbitrary �xed value of ln Λ/µ:

β̃(α) = β(α) γ̃(α) = γ(α). (18)

Due to the scheme-dependence the RG functions
β̃(α) and γ̃(α) satisfy the NSVZ relation only in a
certain subtraction scheme, called the NSVZ scheme.
This scheme is evidently �xed in all loops by the
boundary conditions (17) if the theory is regularized
by higher derivatives, because the functions β and γ
satisfy the NSVZ relation in the case of using this
regularization.

5 RG functions in the three-loop
approximation

Using the higher derivative regularization with
Rk = 1 + k2n/Λ2n one can calculate the β-function

and the anomalous dimension in the three- and two-
loop approximations, respectively. Let us present the
results for various de�nitions of the RG functions and
in various subtraction schemes.

The RG functions de�ned in terms of the bare
coupling constant coincide with the RG functions
de�ned in terms of the renormalized coupling constant
in the NSVZ scheme and are given by the following
expressions:

γ̃NSVZ(α) = γ(α)− α

π
+
α2

π2

(1

2
+Nf

n∑
I=1

cI ln aI

+Nf

)
+O(α3); (19)

β̃NSVZ(α) = β(α)
α2Nf
π

(
1 +

α

π
− α2

π2

(1

2
+Nf

×
n∑
I=1

cI ln aI +Nf

)
+O(α3)

)
. (20)

We see that in this scheme the NSVZ relation is really
satis�ed in the considered approximation.

Let us also present the results for the RG functions
de�ned in terms of the renormalized coupling constants
for other subtraction schemes.

In the MOM scheme the dimensional reduction
and the higher derivative regularizations give the same
result [37]

γ̃MOM(α) = −α
π

+
α2(1 +Nf )

2π2
+O(α3); (21)

β̃MOM(α) =
α2Nf
π

(
1 +

α

π
− α2

2π2

(
1 + 3Nf

× (1− ζ(3))
)

+O(α3)
)
. (22)

In the DR-scheme the result was obtained in Ref. [16]
and is written as

γ̃DR(α) = −α
π

+
α2(2 + 2Nf )

4π2
+O(α3); (23)

β̃DR(α) =
α2Nf
π

(
1 +

α

π
− α2(2 + 3Nf )

4π2
+O(α3)

)
.

Comparing all above expressions one can see that in
the considered approximations only terms proportional
to (Nf )2α4 in the β-function and to Nfα

2 in the
anomalous dimension are scheme dependent. The other
terms coincide in all schemes.

6 The NSVZ relation and �nite
renormalizations

Di�erent renormalization prescriptions can be
related by �nite renormalizations

α→ α′(α); Z ′(α′,Λ/µ) = z(α)Z(α,Λ/µ), (24)
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under which the β-function (15) and the anomalous
dimension (16) are changed as follows:

β̃′(α′) =
dα′

dα
β̃(α); γ̃′(α′) =

d ln z

dα
·β̃(α)+γ̃(α). (25)

Using these equations one can see [37] that if β̃(α) and
γ̃(α) satisfy the NSVZ relation, then

β̃′(α′) =
dα′

dα
· α

2Nf
π

1− γ̃′(α′)
1− α2Nf (d ln z/dα)/π

∣∣∣
α=α(α′)

.

Taking into account that quantum corrections to the
coupling constant are proportional at least to Nf we
obtain

α′(α)− α = O(Nf ); z(α) = O
(
(Nf )0

)
. (26)

Therefore, all scheme-dependent terms in the β-
function are proportional at least to (Nf )2 in all loops,
while the terms proportional to (Nf )0 in the anomalous
dimension are scheme-independent. This means that
the NSVZ relation is valid for terms proportional to
(Nf )1 in all orders. Nevertheless, terms proportional
to (Nf )α with α ≥ 2 are scheme-dependent.

Similarly making �nite renormalizations in the non-
Abelian case one can see [38] that in L loops terms
proportional to tr

(
C(R)L

)
satisfy the NSVZ relation

for an arbitrary renormalization prescription. This
implies that the NSVZ relation non-trivially constrains
the divergences in spite of its scheme-dependence.

7 Conclusion

For Abelian supersymmetric theories, regularized
by higher derivatives, the NSVZ β-function relates the
scheme-independent RG functions de�ned in terms of
the bare coupling constant. The NSVZ relation follows
from the fact that the integrals which determine the β-
function de�ned in terms of the bare coupling constant
can be written as integrals of double total derivatives.

For the RG functions de�ned in terms of the
renormalized coupling constant, the NSVZ relation is
valid only in a special NSVZ scheme. In the Abelian
case the higher derivative regularization enables to give
a simple prescription for constructing this scheme in all
orders by imposing the boundary conditions (17).

Although the NSVZ relation is scheme-dependent,
it has some scheme-independent consequences which
non-trivially restrict the divergences.
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Ê. Â. Ñòåïàíüÿíö

NSVZ ÑÕÅÌÀ È ÐÅÃÓËßÐÈÇÀÖÈß ÂÛÑØÈÌÈ ÏÐÎÈÇÂÎÄÍÛÌÈ

Äëÿ àáåëåâûõ N = 1 ñóïåðñèììåòðè÷íûõ òåîðèé, ðåãóëÿðèçîâàííûõ âûñøèìè ïðîèçâîäíûìè, NSVZ ñõåìà ïîñòðîå-
íà âî âñåõ ïîðÿäêàõ äëÿ ðåíîðìãðóïïîâûõ ôóíêöèé, îïðåäåëåííûõ â òåðìèíàõ ïåðåíîðìèðîâàííîé êîíñòàíòû ñâÿ-
çè. Äëÿ äðóãèõ ïåðåíîðìèðîâî÷íûõ ïðåäïèñàíèé èññëåäóþòñÿ ñõåìíî-íåçàâèñèìûå ñëåäñòâèÿ NSVZ ñîîòíîøåíèÿ.
Îáúÿñíÿåòñÿ, ïî÷åìó äëÿ ðåíîðìãðóïïîâûõ ôóíêöèé, îïðåäåëåííûõ â òåðìèíàõ ãîëîé êîíñòàíòû ñâÿçè, NSVZ ñîîò-
íîøåíèå ñïðàâåäëèâî ïðè ïðîèçâîëüíûõ ïåðåíîðìèðîâî÷íûõ ïðåäïèñàíèÿõ â ñëó÷àå èñïîëüçîâàíèÿ ðåãóëÿðèçàöèè
âûñøèìè ïðîèçâîäíûìè.

Êëþ÷åâûå ñëîâà: ñóïåðñèììåòðèÿ, ïåðåíîðìèðîâêà, β-ôóíêöèÿ, àíîìàëüíàÿ ðàçìåðíîñòü.
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