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INVERSE PROBLEM FOR STATIC ELECTROMAGNETIC FIELD IN A DIPOLE APPROXIMATION
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The following inverse problem is discussed. A static electromagnetic field generated by a limited system of charges and
currents is supposed to be known with its first derivatives at a point somewhere far from the system. This allows to
reconstruct the position of the system, its net charge, and the electric and magnetic moments of the system.
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1 Statement of the problem

By the inverse problem of electrodynamics we mean
the problem of reconstructing the charge and current
densities from the known electromagnetic field they
create. Obviously, the solution of the inverse problem of
electrodynamics depends substantially on the presence
of materials, the region in which the electromagnetic
field is specified, ets. It is well known that the value
of an analytic function and all its derivatives at some
point allow to reconstruct the value of the function
in the domain of definition by use of the Taylor
series. Applied to the electrostatic inverse problem it
means that if we know the value of electromagnetic
field in some point and all its derivatives at this
point, we can reconstruct the field in the whole space.
Furthermore, the Maxwell equations allow to calculate
the charge and current density functions p(r) and j(r)
respectively:

p(r) = %divE(T), j(r) = irotH(r).
Here E(r) is the electric field and H (r) is the magnetic
field.

In actual practice we are able to measure the field
and only few first derivatives with an inevitable error.
This means that we can reconstruct the field only in a
small vicinity around the point where the field is mea-
sured. But the real problem encountered in practice is
to calculate the field and charge distribution far from
the point where the field is measured. In order to do it
we have to know the value of field and its derivatives
up to a very high order and with high accuracy. We
present here another approach based on the multipole
expansion of the field far from the static collection of
charges and currents.

Suppose we know the value of electric E and
magnetic H fields at some point far from limited
system of charges and currents. We know also the
first derivatives of fields E;; = OFE;/0x; and H;; =

inverse problem, electromagnetic field, dipole moment, charge.

OH;/0z;. There is to define the charge ¢, the electric
d and magnetic m dipole moments of the distant
electromagnetic system, and the location = of the
system. Let the coordinate origin be at the point where
the fields are defined. We start with the well known
formula for the fields of electric and magnetic dipoles
[1,2]

E = L, Arerore (1)

(2)

Taking the derivatives of these expressions with respect
to coordinates we find

H:

£ {7?5‘5:3}7 (3)
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where ¢;; is the Kronecker symbol. One can see
from Eqs (3) and (4) that the tensors E;; and H;;
are symmetrical. This follows also from the Maxwell
equations, namely from rotE = 0 and rotH = 0.
Besides, the Maxwell equations divE = 0 and divH =
0 give

Ei1+ Eg + E33 =0, (5)

We consider expressions (1) — (4) as a set of equations
in 10 scalar unknowns ¢, r, d and m. But this set
consist of 16 equations with regard to the conditions
(5), and symmetry of the tensors E;; and H;;. This
allows us to formulate the inverse problem in more
general sence. Namely, we can consider fields E and
H as being originated by different sources. Let us
denote by r, the radius-vector of a charge collection
with a total charge ¢ and an electric dipole moment

Hyy + Hyy + H3z = 0.
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d, and by 7, the radius-vector of a system of currents
with a magnetic dipole moment m. Then the set of
equations (1) — (4) splits into two independent sets for
rq and r,,. In solving these equations we can obtain in
particular 4 = 7y, which means that the electric field
E and magnetic field H are generated by the same
electromagnetic system.

It should be pointed out, that in calculation of fields
far from an electromagnetic system we can neglect the
higher terms of multipole expansion. The accuracy of
such representation depends on the ratio between the
sizes of the system and the distance between the system
and observer. In solving the inverse problem we find
only the distance |r|, but not the sizes of system. In
order to estimate the accuracy of the received solution
one have to calculate the sizes of the system by some
independent method. For example one can solve the
inverse problem for a few different positions of the
observer and then one can estimate the sizes of the
system. One can also investigate the field in the vicinity
of the observer in order to find out whether this field
is of dipole nature. These problems are not considered
in this paper. In order to exclude such questions we
consider further a point-like charge with an electric
dipole moment and a point-like magnetic moment. In
the next two sections we solve the inverse problem first
for the equations (1) and (3) and then for equations

(2) and (4).

2 Inverse problem for a charge and electric
dipole

Let us solve the equations (1) and (3) with respect
to the unknown ¢, d and r'. We choose the coordinate
system as follows: the coordinate origin is placed at the
point where the field is specified, the x axis is directed
along the vector E and the y axis is aligned with the
principal normal to the electric field line. The vector of
the principal normal n is defined by the equality [3]

1 0FE
n= kE 0Os’
where k is the curvature of the field line and Os is

the displacement along the field line. Taking derivative
from E we find

1
— B

where D = (EV)E with the projections D; = EpFy
(a summation over repeated indices is implied). The
projections of the vector n on the axes of an arbitrary
orthogonal coordinate system are expressed in terms of
components of the tensor E;; as follows:

1
T

=

n DE],

EvEj(E;Eiy, — EiEy;j).

If the x axis is directed in the sense of the vector E,
then

1
n = E{Q Elg, E13}. (6)

With the y axis directed in the sense of the vector
n we have Fi3 = 0 and Ei5 > 0. It can be seen
from Eq. (1) that the vectors E, d and r lie in the
same plane; therefore, the problem is reduced to a two-
dimensional one. In the z, y, z coordinate system we
have E = (E,0,0), d = (d;,d,,0), and Es3 = 0 as a
consequence of the axial symmetry of the field. Thus,
five functions of the coordinates E,, E,, E11, Ei2 and
E33 are known. They can be used to find five unknowns
q, dg, dy, 71 and 72. Eqs (1) and (3) in the (z,y) plane
take the form

E=-%+ W—5_T%, (7)
0— _%/ n 3(Td)g1/n5— 7“2dy7 ()
By =% - (:‘:) —6%—5%73332 {715(:‘71)], 9)
By = —3d’”y:5dyx 3 {qS = 5(’;?)] , (10)
Bgy = 4 — 3(:?) (11)

The charge ¢ and the components of the dipole moment
can be easily expressed from Eqs (7), (8) and (11):

dm - *TS (E + E33I)7 (12)
dy = _TByE337 (13)
q = —2r3Es3;—3arFE. (14)

Substituting these formulas into Eqs (9) and (10), we
find

2R 2Fs-
En :E33+6my4 —3% 2337
r r
xyFss3 yE yx’E
E12:—3 T2 +37‘72_6 r4 . (15)

Taking into account that r = +/x2+y?, we get
two equations depending only on x and y. Thus, the
problem is reduced to the solution of the last system of
equations (15). By simple algebraic manipulations this
system can be reduced to the following form (r # 0):
1?(2E33 + F11) + y° (Ess — ) + 2yz By =0,

—zy(E33 + 2E11) — y*E12 + 2°E1o + 3yE = 0. (16)
Let us introduce the designations

Fy =Fs — E33, Fy = E33— FEy1, F3=F1 — Ea,

S =\/E% + F\ F,.

We omit the subscripts ¢ and m having in mind that in the section 2 we are dealing only with ¢ and in section 3 only with

Tm-
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Then the solution of Eq. (16) can be written in the
form

3B Ero(Fy — F)
S S NS e 7] 1
o 4Ef2+F32{3 S ’ (17)
3E 2E}, — F1F;
=% l9p,+ Sz T i 18
Y 4E%2+F32[ 12 S (18)

In order to calculate the dipole moment, we find the
squared radius-vector r

- S2(4E%, + F2)
Substituting Eqs (17), (18) and (19) into Eq. (12), we
find the dipole moment

r [2E7, — F1F3 £25F15] .

(19)

dy = FEY(E12(F? + (—E12 £85)?) F2F19)
27F}
20
X BT (En LSRR (20)
4 15
. S1E*F By o)

(S)M(F} + (=Enp £ 5)%)%/2

The sign + in the formulas indicates the existence
of two solutions of the initial system of equations (7-
11). Physically this means that the same field with its
derivatives may be created at the given point by two
different sources located at different places. One can
find some specific cases of this solution in Ref. [4].

3 Inverse problem for a magnetic dipole
moment

In order to find the position vector r and the
magnetic moment m of a particle generating the field
H we solve equations (2) and (4). Now we align the
axis « along the vector H and the axis y along the
principal normal to the magnetic field line. Repeating
the reasoning of the previous section we get

3(rm)z — r’m,

H = ST (22)

0 — W—;Tme, (23)

Hy = —3(2?)—6”:;9%151:2(’;—?), (24)

Hy = —3Medtmt g, 0m) (25)
r

Hyy = _3(7;?) (26)

Thus, we have 5 equations for 4 unknowns. Hence,
the system of equations (22) — (26) is a overdetermined
one. It means that the components of H and H;; are
not independent. The fact that the field H is produced
by a magnetic moment places a constraint on H and
H;;. The corresponding equation will be found latter

(see Eq. (39)). Substituting (rm) from Eq. (26) into
Eqgs (22) - (25), we find

My
H = —Hjsz— PR (27)
0 = —Hsy-— r3y7 (28)
- H
Hy, = Hs— 6";5”5 — 5?88 (29)
Mgy + My Hss
H12 = 3 7’5 v 5% ? (30)
Eliminating m, and m, we get
H H
Hyy = Hs+a?—2 — 62, (31)
r r
H H
Hy; = 35y+ IZJ%, (32)
r r
and for the square of the distance
3Hx
2
= — . 33
r S (33)

We suppose here that Hss # 0. The case Hz3 = 0 will

be considered latter. Using Eqs (31) — (32) one can find

_3H(3H33 + Hll)
2H?Z, ’

(34)

_ 3HH15(3H33 + Hii)
9HZ,(Hyy + 5Hss)

(35)

Now we express r from Eq. (33)

oy HI [3Hys oy
2|Hss| Hss .

And hence

1/ 30 \*
—= H. H
My 3<2H33) (TH33 + 3 11)(
(36)

e —H ( 3H )43H33+H11 <3H33+H11)3/2
v 2\ 9., ) Hyy + 5Hss Has '

3Hass + H11>3/2
Hss ’

(37)

Let us consider the specific case Hz3 = 0. It follows
from Eq. (26) that (rm) = 0, which gives immediately
x = 0. Egs (22) — (25) give the whole solution in this
case

(38)

Thus, Eqs (34) — (37) and in particular case Eq. (38)
give the solution of the problem.

It was mentioned above that the system of Eqs (22)
- (26) is a overdetermined one. Let us find relation
between H and H;;. On the one hand it follows from
Eq. (33) that

2 _ 9H2(3H33 + Hll)

H .
18, . (Hsz #0)
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On the other hand relations (34) and (35) give In case H33 = 0 we have from Eqs (22) — (26) Hy; = 0.
) ) ) If the condition (39) is not fulfilled, the field H is
2= 9H*(3H33 + Hi1) (1 Hiy 1 > ~ mot produced by a magnetic dipole.
4Hj, Hyy (Hiy + 5Hss)?
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